
A Review on Issues and Solutions of Software Project Management Section A-Research paper

2099 Eur. Chem. Bull. 2023,12(Special Issue 5), 2099-2105

 A REVIEW ON ISSUES AND SOLUTIONS OF

SOFTWARE PROJECT MANAGEMENT

B.Laxminarayan1, Shailesh Kumar2 , J.Somasekar3

 1 Ph.D. Scholar, Department of CSE, JJTU university.

2 Department of CSE, Gopalan College of Engineering and Management, Bangalore.

3Department of CSE, Faculty of Engineering and Technology, Jain University,

Global Campus, Bangalore.

1bdplaxman@gmail.com

Article History: Received: 12.05.2023 Revised: 25.05.2023 Accepted: 05.06.2023

Abstract

As the complexity of “Software Development’ has increased since its inception from

the middle of the 20th century, a new aspect has emerged in the modern days: “Improved

Collaboration”. Indeed, the increasing complexity of applications has demanded the usage of

teams or groups to develop software - as individuals are unable to develop huge software

systems with sufficient speed or quality. In software development, problem solving is critical.

Many of the fundamental software development processes, from requirements analysis,

specification, and design through testing and verification, may be seen as conventional

problem-solving methods. This review will concentrate on collaborative or group problem

solving research and development in the field of software development with the goal of

identifying key outstanding challenges and future directions.

Keywords : Software Development, Requirements Volatility, Security Threats, Test Driven

Development, Collaborative Problem Solving.

I. Introduction

Managing projects of various sizes

and levels of complexity is a necessary

component of doing business in the modern

era regardless of the vertical industry. The

software sector is characterized by new in-

house software development and

implementations, infrastructure-related

initiatives, updates or upgrades, and the

growing development of web-based

solutions and mobile apps. The software

industry is in a constantly evolving, driven

in part by the globalization of a wide range

of goods and services. The software

industry undertakes a wide range of

projects, each with its own set of obstacles,

including the following:

 As a result of globalization, there is a

lot of rivalry.

 Issues with outdated systems and

infrastructure.

 Time to market pressures and

adoption rates

 Software-as-a-service (SaaS) is

gaining traction.

These characteristics may apply to many

businesses but managing projects in the

software industry can feel like being in a

pressure cooker because of the speed at

which technology evolves and competition

ISSN 2063-5346

A Review on Issues and Solutions of Software Project Management Section A-Research paper

2100 Eur. Chem. Bull. 2023,12(Special Issue 5), 2099-2105

intensifies the pressure to deliver projects

on time, on budget, and to the quality

standards expected.

II. Objectives of the study:

The main objectives of the present review

are as follows:

 To find the issues related to the

software development

programmers.

 To make understand the cause of

related issues.

 To provide appropriate solutions to

the software programmers.

 Scope of the study:

This paper describes the main scope

is an executable system dynamic review

that was created to assist project managers

in understanding the complicated effects of

requirements volatility on software

development projects. During the

development process, changes to a set of

criteria can happen at any time (Kotonya

and Sommerville, 1998). These

modifications can be made "while the

requirements are being elicited, analyzed,

and validated, as well as after the system

has been put into service." Previously, the

attitude was that requirements should be

firm by the end of the requirements phase

and that they should not alter after that. This

viewpoint is now widely recognized as

unrealistic (Reifer, 2000).

III. A Review on Causes of Issues and Issues faced by Software Development

Programmers

The present review is based on various issues faced by software development programmers.

Figure1: Issues faced by software development programmers.

A Review on Issues and Solutions of Software Project Management Section A-Research paper

2101 Eur. Chem. Bull. 2023,12(Special Issue 5), 2099-2105

Requirements volatility:

During the software development life cycle,

requirements can change. From the initial

design phase through the execution phase,

adjustments may be made. These changes

that emerge during the development

process pose a danger to the product's cost

and quality, but they also present a chance

to add value (Madachy and Tarbet, 2000;;

Lin and Levary, 1989). The purpose of this

article is to discuss requirements, their

volatility, the sources of requirement

volatility, and the influence of requirement

volatility on project schedule, cost,

performance, software quality, and

maintenance. The goal of this paper is to go

over some of the aspects of requirement

volatility (Lane, 1998; Loconsole and

Börstler, 2005, 2007; Lin et al., 1997).

High Competition:

Competition factors, whether local or

worldwide, can have a significant impact

on software firms' customer retention,

pricing structures, client reach, service

level agreements, and so on. As a result, it

is critical to relieve pressure on team

members in order to improve work

performance. Project managers will need to

engage closely with executives, business

owners, and other stakeholders to flush out

all aspects that may affect the success of

software-related projects (Boltanski and

Chiapello, 2005; Castells, 2000).

Open source software (OSS) has

transformed large parts of the software

industry in recent years, serving as an

alternative to proprietary software and

enabling radically new business models,

organizational forms, and commons-based

platforms as new value creation

foundations (Fitzgerald, 2006; Krogh and

Spaeth, 2007).

The fact that programmers must manage

several logics driving the dominant

rationale may therefore result in a set of

conflicts (Bonaccorsi and Rossi, 2006).

Test driven development:

In fact everyone is aware that producing a

product entails more than just writing code.

Various iterations of testing are conducted

throughout the project cycle to ensure that

the actual product matches the expected

outcome. It is also very typical to find

difficulties/bugs during the testing phases,

which necessitates retesting and repairing

until the issues are fixed. Furthermore,

project teams may find it more difficult to

isolate difficulties, necessitating escalation

to more senior IT staff/developers. Because

project managers must apply excellent

judgment to guarantee that all concerns are

fixed prior to the systems going live. It goes

without saying that the testing process is

crucial for avoiding customer unhappiness

and ensuring that no additional rework is

required after going live.

TDD (test-driven development) is a

software development method in which

tests are written before any code is

implemented. TDD is a test-first

methodology that relies on the repetition of

a short development cycle. Each new

feature, according to it, begins with the

creation of a test. Before writing enough

production code to pass the test, the

developer creates an automated test case.

This test case will fail at first. The next

stage will be to write code that focuses on

functionality in order to pass the test.

Following these steps, a developer

refractors the code so that it passes all of the

tests (Ivo et al., 2018).

Test-driven development has already been

the subject of scrutiny. Turhan et al. [2], for

example, conducted a thorough literature

review on test-driven development that

focused on both internal and external

quality issues. Hundreds of articles have

mentioned test-driven development in the

recent decade, but just a few have reported

empirically viable findings, according to

the review.

A Review on Issues and Solutions of Software Project Management Section A-Research paper

2102 Eur. Chem. Bull. 2023,12(Special Issue 5), 2099-2105

Integration:

In software engineering, integration refers

to the process of merging software

components (also known as subsystems)

into a single system. When compared to the

sum of all independent systems, integrated

systems perform better. What's more, a

holistic application has a higher level of

functional relevance. It's more

straightforward to distribute and use. These

days, integrating is more popular than ever.

On the Internet, there are an increasing

number of mergeable systems. As a result,

maintaining contact with them is critical.

Many of these benefits were illusory in our

experience with (Zelkowitz, 1990;

Zelkowitz et al., 1988a, 1988b; Basili and

Rombach, 1987; Duggan, 1988). While

syntax-based editors make most programed

building tasks go faster, there are a few

popular constructs that cause issues and

diminish the gains.

Threats to Security:

The fact that data is a valuable asset for

practically everyone is undeniable. And

some people, such as client, are willing to

pay a high price for it. Clients undoubtedly

rely on to protect their data from these

attacks. And, believe it or not, that's a

significant amount of pressure.

Unfortunately, beginners frequently miss

security flaws in their code and are unaware

of the ramifications until after a security

breach has occurred. A fresh programmer

may find that overlooking security flaws,

especially if programmer focus is on

producing error-free code rather to ensuring

that it is secure. However, hackers are

constantly looking for ways to infiltrate

code since they are aware of this flaw. No

one can prevent someone from attempting

to hack the code, but always be cautious and

work harder to make it more difficult for

them by securing it against popular hacking

techniques. Here are some pointers:

a. Use parameterized queries for SQL

injections.

An attacker may employ SQL injections to

steal data such as a user's login credentials.

To avoid this type of attack, use

parameterized queries in the programming

language using.

b. Ensure that your desk is safe.

An Attacker can be anyone. They do not

often attack online. They may be someone

from workplace, for example. For example,

if fired an employee, he or she may decide

to retaliate by modifying or stealing crucial

project data using system. To avoid this

type of attack, log off from any software are

using once finished with it.

It is critical to understand the security risks

associated with the software system you are

developing in the software world (Ibrahim

& Mamdouh, 2016). Software security is a

philosophy that encompasses concepts,

checklists, tools, processes, and methods,

among other things (Gary, 2016). These are

necessary for the architecture and design of

software systems, as well as the coding and

construction of software systems, as well as

the verification and testing of software

systems.

Basic security goals, such as

confidentiality, integrity, and availability

(the CIA trinity), as well as security risks

regulating and monitoring activities and

concepts like assets, threats, and

vulnerabilities (Thamer & Mamdouh ,

2016). Furthermore, even with some

security measures in place, there are still

hazards that a software may encounter that

must be handled (Barry, 1991). In the

software business, risk management

solutions have played a critical role. It

entails strategic software engineering

methods that contribute to a more efficient

software development process. As outlined

by (Maruf et al., 2018), these approaches

provide a disciplined atmosphere for

successful decision-making by assessing

actual and anticipated challenges in

software development. Risk management is

A Review on Issues and Solutions of Software Project Management Section A-Research paper

2103 Eur. Chem. Bull. 2023,12(Special Issue 5), 2099-2105

the de facto method of dealing with risks

(Thamer & Mamdouh, 2016). Risk

management does not remove risks; rather,

it is a method of identifying, assessing,

minimizing, and dealing with them in a

methodical manner. Its main goal is to

identify potential difficulties before they

develop so that they can be dealt with

quickly and professionally. It should start

as soon as possible and continue throughout

the project's whole life cycle (Ibrahim &

Mamdouh, 2016).

Ignoring Best Practices in Code

Development:

It is typical for developers to skip code

reviews or suppress defects in order to save

time and fulfill deadlines. But don't forget

that following a rigorous quality assurance

approach is critical for a successful launch.

So, if programmer, as a project manager,

sees developers cutting corners in the

development process, put a stop to it right

away. Because it is important / necessary to

apply excellent code development practices

in order to satisfy the requirements sooner

and more efficiently.

IV. A Review on Solutions to the

Software Development Programmers

This paper is focused on collaborative

problem solving because it's at the heart of

collaborative software development: when

someone develops software, they're

designing a solution to a problem. Models

for collaborative issue solving are still in

the early stages of development. Various

models have been devised by researchers,

however they have not been thoroughly

tested or implemented. Their use has been

limited in both the industrial and

educational sectors.

As a starting point, consider the models of

Simon (1997) and Hohmann (1997). In the

field of problem solving, Simon's (1960)

influence has been seminal (Deek, 1997;

Hohmann, 1997). Despite the fact that

Simon's collaborative decision making

model was limited to collaborative decision

making, the similarities with collaborative

issue solving (Huitt, 1992) make it a

significant point of reference for the

collaborative problem solving models

we've discussed. Hohmann's (1997) model,

on the other hand, is a good starting place

because it is rather thorough and closely

tied to some of Simon's most important

work. Following is a list of qualities derived

from Hohmann's (1997) and Simon's

(1960) models.

Task identification: The goal of this task

is to correctly identify the components of

the problem, which can only be

accomplished if the problem solution

method is well comprehended. This stage

also aids in the group's comprehension of

the situation. According to Hohmann

(1997), the members of the team, rather

than an outside agent, are best suited to

complete this duty.

Task distribution: The components of the

problem solution should be allocated

among the members of the group. This can

be accomplished through voting,

elimination, or direct assignment

(Hohmann, 1997). Distribution by direct

assignment may be simple if group

members are aware of one other's abilities.

If election is employed, it is critical that

each group member be clear about which

component they want to implement in order

to secure a successful outcome. When there

is only one component remaining and no

one has been allocated to it, assignment by

elimination occurs.

Coordinating Outcomes: Coordination is

a continuous process in which each group

member should take part. To enable

members to interact effectively, groups

require a tremendous lot of control and

coordination (Finnegan & O'Mahony,

1996). This type of coordination increases

the possibility of the group working

together harmoniously to achieve the goal.

Many problem-solving tasks require

coordination, such as task distribution,

subproblem integration, design debates,

A Review on Issues and Solutions of Software Project Management Section A-Research paper

2104 Eur. Chem. Bull. 2023,12(Special Issue 5), 2099-2105

and so on, hence collaboration is critical for

successful development (Hohmann, 1997).

Integrating Solutions: Because the

components identified during the solution

design stage must be merged, an integration

strategy must be created, starting with the

solution integration order.

Plan Development: The behavior

development plan is an integrated plan for

all group members, not merely a collection

of individual plans for each member

(Simon, 1997).

Communication Strategy: Each member

must be informed about the development

plan (Simon, 1997).

Behavior Modification: Individual

members must be willing to let the plan

guide their actions (Simon, 1997).

V. Conclusion

Software development programmers’

ultimate goal is to improve the software

development process. To date, such

applications have placed a greater emphasis

on processes and technologies than on

people. Current systems have similar limits,

as well as corresponding chances for

improvement. These shortcomings stem

from "not comprehending the particular

demands this class of software imposes on

developers and users," according to a

notable researcher in the field. The goal is

to turn these flaws into research

opportunities. Current collaborative

problem solving models do not effectively

or clearly address the qualities and

requirements of group cognition, which is a

significant drawback of current research.

The restricted applicability of psychology

and sociology in collaborative problem-

solving models is another important

constraint.

Collaboration in software development and

problem solving will clearly speed up the

software development process, allowing for

faster, more cost-effective product delivery

and more dependable creation of complex

systems. Academic training in problem

solving and software development can also

benefit from appropriate collaborative

environments. Because of the complexity

and speed of application development,

collaboration with coworkers, or group

problem solving, is a required skill for

today's software developers. The general

result of present analysis of the literature is

that merging perspectives and issues from

collaborative problem solving, psychology,

sociology, and collaborative software

development can significantly advance the

state of the art.

References:

1. Simon, H. A., The New Science of

Management, Harper and Row, New

York, 1960.

2. Simon, H. A., Administrative Behavior,

Fourth Edition, The Free Press, New

York, 1997.

3. Hohmann, L., Journey of the Software

Professional, Prentice Hall PTR, New

Jersey, 1997.

4. Finnegan, P., O’Mahony, L., “Group

Problem Solving and Decision Making:

an Investigation of the Process and the

Supporting Technology”, Journal of

Information Technology, Vol. 11, Num.

3, September 1996, 211-221.

5. Huitt, W., “Problem solving and

decision making: Consideration of

individual differences using the Myers-

Briggs Type Indicator”, Journal of

Psychological Type, Volume 24, pp.

33-44, 1992.

6. Deek, F., McHugh, J., Turoff, M.,

“Problem Solving and Cognitive

Foundations for Program Development:

An Integrated Model”, submitted for

review to the Journal of Cognitive

Science, 2000.

7. Deek, F.P., Turoff, M., McHugh, J., “A

Common Model for Problem Solving

and Program Development”, Journal of

the IEEE Transactions on Education,

Volume 42, Number 4., pp. 331-336,

November 1999.

A Review on Issues and Solutions of Software Project Management Section A-Research paper

2105 Eur. Chem. Bull. 2023,12(Special Issue 5), 2099-2105

8. Beck, K., Beedle, M., van Bennekum,

A., Cockburn, A., Cunningham, W.,

Fowler, M., Grenning, J., Highsmith, J.,

Hunt, A., Jeffries, R., Kern, J., Marick,

B., Martin, R., Mellor, S., Schwaber,

K., Sutherland, J., Thomas, D., 2001.

Houston, D.X., 2000. A Software

Project Simulation Model for Risk

Management, Ph.D. Dissertation,

Arizona State University.

9. Houston, D.X., Ferreira, S., Collofello,

J.S., Montgomery, D.C., Mackulak,

G.T., Shunk, D.L., 2001. Behavioral

characterization: finding and using the

influential factors in software process

simulation models. Journal of Systems

and Software 59 (3), 259–270.

10. Javed, T., Maqsood, M., Durrani, Q.S.,

2004. A study to investigate the impact

of requirements instability on software

defects. ACM SIGSOFT Software

Engineering Notes 29 (3), 7.

11. Jones, C., 1994. Assessment and

Control of Software Risks. PTR

Prentice-Hall, Inc., Englewood Cliffs,

NJ.

12. Jones, C., 1998. Estimating Software

Costs. McGraw-Hill, New York.

13. Kotonya, G., Sommerville, I., 1998.

Requirements Engineering: Processes

and Techniques. John Wiley and Sons,

Ltd.

14. Lane, M.S., 1998. Enhancing software

development productivity in Australian

firms. In: Proceedings of the Ninth

Australasian Conference on

Information Systems (ACIS ’98), vol.

1, pp. 337–349.

15. Lin, C.Y., Abdel-Hamid, T., Sherif,

J.S., 1997. Software-engineering

process simulation model (SEPS).

Journal of Systems and Software 38 (3),

263–277.

16. Lin, C.Y., Levary, R.R., 1989.

Computer aided software development

process design. IEEE Transactions on

Software Engineering 15 (9), 1025–

1037.

17. Loconsole, A., Börstler, J., 2005. An

industrial case study on requirements

volatility measures. In: Proceedings of

the 12th Asia-Pacific Software

Engineering Conference (APSEC ’05),

8 p.

18. Loconsole, A., Börstler, J., 2007. Are

size measures better than expert

judgment? An industrial case study on

requirements volatility. In: Proceedings

of the 14th Asia-Pacific Software

Engineering Conference (APSEC ’07),

pp. 238–245.

