

ρ-SETS WHERE $ρ ∈ { rωδ, r*ωδ }$ ¹A. EZHILARASI AND ²O. RAVI

¹Assistant Professor, Department of Mathematics, S.S.K.V College of Arts and Science for Women, Kanchipuram, Kanchipuram District, Tamil Nadu, India. e-mail: <u>ezhilarasi50@yahoo.com</u>, Research Scholar, Madurai Kamaraj University, Madurai - 21, Tamil Nadu, India. ²Associate Professor, Department of Mathematics, Pasumpon Muthuramalinga Thevar College, Usilampatti - 625 532, Madurai District, Tamil Nadu, India. e-mail: <u>siingam@yahoo.com</u>.

Abstract: In this paper, the mixed and ordinary operators are characterized in the classes of $r\omega\delta$ -sets and $r^*\omega\delta$ -sets. Certain topological sets that are inherited from ω -open set [2], open set and δ -open set [13] are characterized using $r\omega\delta$ -sets and $r^*\omega\delta$ -sets. More over the behavior of $r\omega\delta$ -sets and $r^*\omega\delta$ -sets in spaces are investigated. The Inclusion chains among the mixed and ordinary operators are refined in the domains of $r\omega\delta$ -sets and $r^*\omega\delta$ -sets.

DOI: 10.48047/ecb/2022.11.12.161

1 INTRODUCTION

In the year 1982, Hdeib [2] introduced the notion of a ω -closed set. A subset B of a topological space is called ω -closed if it contains all its condensation points. Recently general topologists introduced and studied new types of topological sets by mixing interior, closure operators with δ -interior, δ -closure operators. In this paper, our investigations on ω -open sets and ω -closed sets in the sense of Hdeib, lead to the development in the domains of topology.

2 PRELIMINARIES

Throughout this paper (X, τ) (or X) represent topological spaces on which no separation axioms are assumed unless otherwise mentioned. The

concept of δ -closure was introduced and studied by Velicko [13] in the year 1968. A point x is in the δ -closure of A if every regular open nbd of x intersects A. $Cl_{\delta}A$ denotes the δ -closure of A.

Definition 2.1 A subset A of X is δ -closed [13] if $A = Cl_{\delta}A$. The complement of a δ -closed set is δ -open. The collection of all δ -open sets is a topology denoted by τ^{δ} . This τ^{δ} is called the semi - regularization of τ .

Let $Int_{\delta}A$ and $Cl_{\delta}A$ denote the δ -interior and δ -closure of A respectively. Velicko established that the operators Cl(.) and $Cl_{\delta}(.)$ have the same effect on the class of open sets and the operators Int(.) and $Int_{\delta}(.)$ coincide on the class of closed sets.

Lemma 2.2 [13]

- (i) For any open set A, $Cl_{\delta}A = ClA$,
- (ii) For any closed set B, $Int_{\delta}B = IntB$.

Definition 2.3

A subset M of a space X is called:

- (i) semi-open [4] if $M \subseteq Cl(Int(M))$;
- (ii) regular open [9] if M = Int(Cl(M));

(iii) preopen [5] if $M \subseteq Int(Cl(M))$.

The complements of the above-mentioned open sets are called their respective closed sets.

Definition 2.4

A subset A of a space X is called:

- (i) δ -semi-open [7,11] if $A \subseteq Cl(Int_{\delta}(A))$;
- (ii) δ -pre-open [11] if $A \subseteq Int(Cl_{\delta}A)$.

The complements of the above-mentioned open sets are called their respective closed sets.

Definition 2.5 [2] Let H be a subset of a space (X, τ) , a point p in X is called a condensation point of H if for each open set U containing p, U \cap H is uncountable.

Definition 2.6 [2] A subset H of a space (X, τ) is called ω -closed if it contains all its condensation points.

The complement of an ω -closed set is called ω -open. The family of all ω closed sets is denoted by $\omega C(X, \tau)$. The family of all ω -open sets is denoted by $\omega O(X)$. It is well known that a subset W of a space (X, τ) is ω -open [2] if and only if for each $x \in W$, there exists $U \in \tau$ such that $x \in U$ and U - W is countable. The family of all ω -open sets, denoted by τ_{ω} , is a topology on X, which is finer than τ . The interior and closure operator in (X, τ_{ω}) are denoted by Int_{ω} and Cl_{ω} respectively.

Definition 2.7 The set A of a space X is called

- (i) regular ω -open [6] if $A = Int_{\omega}ClA$
- (ii) semi- ω -open [10] if A \subseteq *Cl Int* $_{\omega}$ A
- (iii) pre- ω -open [10,12] if A \subseteq Int_{ω}Cl A

The complements of the above-mentioned open sets are called their respective closed.

Definition 2.8 [3] A space (X,τ) is said to be Anti Locally Countable (briefly ALC) if every non empty open set is uncountable.

Proposition 2.9 [12] Let A be a subset of an ALC space. Then the following chains hold.

- (i) $Cl_{\omega}Int_{\delta}A = ClInt_{\delta}A = Cl_{\delta}Int_{\delta}A \subseteq Cl_{\delta}IntA = ClIntA = Cl_{\omega}IntA \subseteq Cl_{\omega}Int_{\omega}A = ClInt_{\omega}A \subseteq Cl_{\delta}Int_{\omega}A.$
- (ii) $Int_{\omega}Cl_{\delta}A = IntCl_{\delta}A = Int_{\delta}Cl_{\delta}A \supseteq Int_{\delta}ClA = IntClA = Int_{\omega}ClA \supseteq Int_{\omega}Cl_{\omega}A = IntCl_{\omega}A \supseteq Int_{\delta}Cl_{\omega}A.$

3 rωδ-SETS AND r*ωδ-SETS

we study r-sets and r*-sets that are defined using interior and closure operators in topology and its associated delta topology. In this paper, the notions of $r\omega\delta$ -set and $r^*\omega\delta$ -set are introduced using mixed and ordinary two level operators in topology. The applications of the above two types sets to Anti Locally Countable Spaces are investigated.

Definition 3.1 A subset A of a space (X, τ) is

- (i) an r ω -set if $IntCl_{\omega}A = IntClA$,
- (ii) an $r^*\omega$ -set if $ClInt_{\omega}A = ClIntA$,
- (iii) an $rr^*\omega$ -set if it is both an $r\omega$ -set and an $r^*\omega$ -set,

It is noted that

- (i) The set A is an r ω -set \Leftrightarrow *IntCl* $_{\omega}A = IntClA = Int_{\delta}ClA$.
- (ii) The set A is an $r^*\omega$ -set $\Leftrightarrow ClInt_{\omega}A = ClIntA = Cl_{\delta}IntA$.

Proposition 3.2 A subset A of a space (X,τ) is

- (i) an $r\omega\delta$ -set \Leftrightarrow X\A is an $r^*\omega\delta$ -set,
- (ii) an $rr^*\omega\delta$ -set $\Leftrightarrow X\setminus A$ is an $rr^*\omega\delta$ -set.

Proof. The set A is an $r\omega\delta$ -set \Leftrightarrow *IntCl*_{ω}A = *IntCl*_{δ}A,

 $\Leftrightarrow X \setminus IntCl_{\omega}A = X \setminus IntCl_{\delta}A$

 $\Leftrightarrow ClInt_{\omega}(X \setminus A) = ClInt_{\delta}(X \setminus A)$

 \Leftrightarrow A is an r* $\omega\delta$ -set. This proves (i).

The set A is an $rr^*\omega\delta$ -set \Leftrightarrow A is an $r\omega\delta$ -set and an $r^*\omega\delta$ -set.

 \Leftrightarrow X\A is an r* $\omega\delta$ -set and an r $\omega\delta$ -set.

 $\Leftrightarrow X \setminus A$ is an r $\omega\delta$ -set and an r $^*\omega\delta$ -set.

 \Leftrightarrow X\A is an rr* $\omega\delta$ -set.

This proves (ii).

Proposition 3.3 Let A and B be an $r\omega$ -set and $r\omega\delta$ -set respectively in an ALC space. Then the following chains hold.

(*i*) $Int_{\delta}Cl_{\omega}A \subseteq IntCl_{\omega}A = Int_{\omega}Cl_{\omega}A = Int_{\omega}ClA = IntClA = Int_{\delta}ClA \subseteq Int_{\delta}Cl_{\delta}A = IntCl_{\delta}A = IntCl_{\delta}A = Int_{\omega}Cl_{\delta}A.$

(*ii*) $Int_{\delta}Cl_{\omega}B \subseteq IntCl_{\omega}B = Int_{\omega}Cl_{\omega}B = Int_{\omega}ClB = IntClB = Int_{\delta}ClB = Int_{\delta}Cl_{\delta}B = IntCl_{\delta}B = IntCl_{\delta}B.$

Proof. Let A be an $r\omega$ -set in an ALC space. Then using Proposition 2.9(ii), we have

 $Int_{\delta}Cl_{\omega}A \underline{_}IntCl_{\omega}A \underline{=}Int_{\omega}Cl_{\omega}A \underline{_}Int_{\omega}ClA \underline{=}IntClA \underline{=}Int_{\delta}ClA \underline{_}Int_{\delta}Cl_{\delta}A \underline{=}IntCl_{\delta}A \underline{=}Int_{\omega}Cl_{\delta}A \underline$

Since A is an $r\omega$ -set, using the result in Definition 3.1 (i) in the above expression we have

 $Int_{\delta}Cl_{\omega}A \subseteq IntCl_{\omega}A = Int_{\omega}Cl_{\omega}A = Int_{\omega}ClA = IntClA = Int_{\delta}ClA \subseteq Int_{\delta}Cl_{\delta}A = IntCl_{\delta}A = IntCl_{\delta$

 $Int_{\omega}Cl_{\delta}A.$

This proves (i).

Now let B be an $r\omega\delta$ -set in an ALC space. Therefore replacing A by B in

Proposition 2.9(ii) we have

 $Int_{\delta}Cl_{\omega}B \underline{\subset} IntCl_{\omega}B = Int_{\omega}Cl_{\omega}B \underline{\subset} Int_{\omega}ClB = IntClB = Int_{\delta}ClB \underline{\subset} Int_{\delta}Cl_{\delta}B = IntCl_{\delta}A = Int_{\omega}Cl_{\delta}A = In$

 $Cl_{\delta}B$. Since B is an r $\infty\delta$ -set, using the result in Definition (i) in the above expression we have

 $Int_{\delta}Cl_{\omega}B \subseteq IntCl_{\omega}B = Int_{\omega}Cl_{\omega}B = Int_{\omega}Cl_{\omega}B = IntCl_{\delta}Cl_{\delta}B = IntCl_{\delta}B = IntCl_{\delta}B$

Proposition 3.4 Let A be an $r\omega$ -set in an ALC space. The followings are equivalent.

- (i) A is regular open
- (ii) A is regular ω -open
- (iii) $A = IntCl_{\omega}A$
- (iv) A is regular open in (X, τ_{ω})
- (v) $A = Int_{\delta}ClA$

Proof. Let A be an $r\omega$ -set in an ALC space. Then we have

 $IntCl_{\omega}A = Int_{\omega}Cl_{\omega}A = Int_{\omega}ClA = IntClA = Int_{\delta}ClA....(1)$

Therefore A is regular open $\Leftrightarrow A = IntClA \Leftrightarrow A = Int_{\delta}ClA$

 $\Leftrightarrow A = Int_{\omega}ClA \Leftrightarrow A \text{ is regular } \omega \text{-open}$

 \Leftrightarrow A= Int_wCl_wA \Leftrightarrow A is regular open in (X, τ_{w})

 $\Leftrightarrow A = IntCl_{\omega}A$. This proves the proposition.

Proposition 3.5 Let A be an $r\omega$ -set in an ALC space. The followings are equivalent.

- (i) A is pre-open
- (ii) A is pre- ω -open
- (iii) $A \subseteq IntCl_{\omega}A$
- (iv) A is pre-open in (X, τ_{ω})
- (v) $A \subseteq Int_{\delta}ClA$

Proof. Let A be an $r\omega$ -set in an ALC space. Then using (1) we have

A is pre-open $\Leftrightarrow A \subseteq IntClA \Leftrightarrow A \subseteq Int_{\delta}ClA$

 $\Leftrightarrow A \subseteq Int_{\omega}ClA \Leftrightarrow A \text{ is pre-} \omega \text{-open}$

 $\Leftrightarrow A \subseteq Int_{\omega}Cl_{\omega}A \Leftrightarrow A \text{ is pre-open in } (X, \tau_{\omega})$

 \Leftrightarrow A \subseteq *IntCl*_{ω}A. This proves the proposition.

Proposition 3.6 Let A be an $r\omega$ -set in an ALC space. The followings are equivalent.

- (i) A is semi-closed
- (ii) A is semi- ω -closed
- (iii) $IntCl_{\omega}A \subseteq A$
- (iv) A is semi-closed in (X, τ_{ω})
- $(v) \quad Int_{\delta}ClA \subseteq A$

Proof. Let A be an $r\omega$ -set in an ALC space. Then we have

A is semi-closed \Leftrightarrow *IntClA* \subseteq A \Leftrightarrow *Int* $_{\delta}ClA \subseteq$ A

 \Leftrightarrow *Int*_{ω}*Cl*A \subseteq A \Leftrightarrow A is semi- ω -closed

 \Leftrightarrow *Int*_{ω}*Cl*_{ω}A \subseteq A \Leftrightarrow A is semi-closed in (X, τ_{ω})

 \Leftrightarrow *IntCl*_{ω}A \subseteq A. This proves the proposition.

Proposition 3.7 Let A be an $r^*\omega$ -set in an ALC space. The followings are

equivalent.

- (i) A is regular closed
- (ii) A is regular ω -closed
- (iii) $A = ClInt_{\omega}A$
- (iv) A is regular closed in (X, τ_{ω})
- (v) $A = Cl_{\delta}IntA$

Proof. Let A be an $r^*\omega$ -set in an ALC space. Then we have

 $Cl_{\delta}IntA = Cl_{\omega}IntA = ClIntA = ClInt_{\omega}A = Cl_{\omega}Int_{\omega}A.$

Therefore A is regular closed $\Leftrightarrow A = ClIntA \Leftrightarrow A = Cl_{\delta}IntA$.

 $\Leftrightarrow A = Cl_{\omega}IntA \Leftrightarrow A$ is regular ω -closed

$$\Leftrightarrow$$
 A = ClInt_wA

 $\Leftrightarrow A = Cl_{\omega}Int_{\omega}A \Leftrightarrow A$ is regular closed in (X, τ_{ω})

Proposition 3.8 Let A be an $r^*\omega$ -set in an ALC space. The followings are equivalent.

- (i) A is pre-closed
- (ii) A is pre- ω -closed

(iii)
$$A \supseteq ClInt_{\omega}A$$

- (iv) A is pre-closed in (X, τ_{ω})
- (v) $A \supseteq Cl_{\delta}IntA$

Proof. Let A be an $r^*\omega$ -set in an ALC space. Then we have

A is pre-closed \Leftrightarrow A \supseteq *ClInt*A \Leftrightarrow A \supseteq *Cl*_{δ}*Int*A.

 $\Leftrightarrow A \supseteq Cl_{\omega}IntA \Leftrightarrow A$ is pre- ω -closed.

 \Leftrightarrow A \supseteq *ClInt*_{ω}A

 $\Leftrightarrow A \supseteq Cl_{\omega}Int_{\omega}A \Leftrightarrow A \text{ is pre-closed in } (X,\tau_{\omega})$

Proposition 3.9 Let A be an $r^*\omega$ -set in an ALC space. The followings are equivalent.

- (i) A is semi-open
- (ii) A is semi- ω -open

- (iii) $A \subseteq Cl_{\omega}IntA$
- (iv) A is semi-open in (X, τ_{ω})
- (v) $A \subseteq Cl_{\delta} Int A$

Proof. Let A be an $r^*\omega$ -set in an ALC space. Then we have

A is semi-open $\Leftrightarrow A \subseteq ClIntA \Leftrightarrow A \subseteq Cl_{\delta}IntA$.

- $\Leftrightarrow A \subseteq ClInt_{\omega}A \Leftrightarrow A \text{ is semi-}\omega\text{-open.}$
- $\Leftrightarrow A \subseteq Cl_{\omega}IntA$
- $\Leftrightarrow A \subseteq Cl_{\omega} Int_{\omega} A \Leftrightarrow A \text{ is semi-open in } (X, \tau_{\omega}) .$

This proves the proposition.

Proposition 3.10 Let B be an $r\omega\delta$ -set in an ALC space. The followings are equivalent.

- (i) B is regular open
- (ii) B is regular ω -open
- (iii) $\mathbf{B} = IntCl_{\omega}\mathbf{B}$
- (iv) B is regular open in (X, τ_{ω})
- (v) B is regular open in (X, τ^{δ})

(vi)
$$B = IntCl_{\delta}A$$

- (vii) $B = Int_{\delta}ClA$
- (viii) $\mathbf{B} = Int_{\omega}Cl_{\delta}\mathbf{B}$

Proof. Let B be an $r\omega\delta$ -set in an ALC space. Then we have

 $IntCl_{\omega}B = Int_{\omega}Cl_{\omega}B = Int_{\omega}C$

Therefore B is regular open $\Leftrightarrow B = IntClB \Leftrightarrow B = IntCl_{\omega}B$

 $\Leftrightarrow \mathbf{B} = Int_{\omega}Cl_{\omega}\mathbf{B} \Leftrightarrow \mathbf{B} \text{ is regular open in } (\mathbf{X},\tau_{\omega})$

 $\Leftrightarrow \mathbf{B} = Int_{\omega}Cl\mathbf{B} \Leftrightarrow \mathbf{B}$ is regular ω -open

 $\Leftrightarrow B = Int_{\delta}ClB \Leftrightarrow B = IntCl_{\delta}B \Leftrightarrow B = Int_{\omega}Cl_{\delta}B$

 $\Leftrightarrow B = Int_{\delta}Cl_{\delta}B \Leftrightarrow B \text{ is regular open in } (X,\tau^{\delta})$

This proves the proposition.

Proposition 3.11 Let B be an $r\omega\delta$ -set in an ALC space. The followings are

equivalent.

- (i) B is pre-open
- (ii) B is pre- ω -open
- (iii) $B \subseteq IntCl_{\omega}B$
- (iv) B is pre-open in (X, τ_{ω})
- (v) B is pre-open in (X, τ^{δ})
- (vi) B is δ -pre-open
- (vii) $B \subseteq Int_{\delta}ClB$
- (viii) $\mathbf{B} \subseteq Int_{\omega}Cl_{\delta}\mathbf{B}$

Proof. Let B be an $r\omega\delta$ -set in an ALC space. Then we have

B is pre-open $\Leftrightarrow B \subseteq IntClB \Leftrightarrow B \subseteq IntCl_{\omega}B$

 $\Leftrightarrow B \subseteq Int_{\omega}Cl_{\omega}B \Leftrightarrow B \text{ is pre-open in } (X,\tau_{\omega})$

- $\Leftrightarrow B \subseteq Int_{\omega}ClB \Leftrightarrow B$ is pre- ω -open
- $\Leftrightarrow B \subseteq IntCl_{\delta}B \iff B \text{ is } \delta\text{-pre-open}$
- $\Leftrightarrow B \subseteq Int_{\delta}ClB \Leftrightarrow B \subseteq Int_{\omega}Cl_{\delta}B$
- \Leftrightarrow B \subseteq *Int* $_{\delta}Cl_{\delta}B \Leftrightarrow$ B is pre-open in (X, τ^{δ})

This proves the proposition.

Proposition 3.12 Let B be an $r\omega\delta$ -set in an ALC space. The followings are equivalent.

- (i) B is semi-closed
- (ii) B is semi- ω -closed
- (iii) $B \supseteq Int_{\omega}ClB$
- (iv) B is semi-closed in (X, τ_{ω})
- (v) B is semi-closed in (X, τ^{δ})
- (vi) B is δ semi-closed
- (vii) $B \supseteq Int_{\delta}ClB$
- (viii) $B \supseteq Int_{\omega}Cl_{\delta}B$

Proof. Let B be an $r\omega\delta$ -set in an ALC space. Then we have

- B is semi-closed \Leftrightarrow B \supseteq *IntCl*B \Leftrightarrow B \supseteq *Int* $_{\omega}$ *Cl*B
- $\Leftrightarrow B \supseteq Int_{\omega}Cl_{\omega}B \Leftrightarrow B \text{ is semi-closed in } (X,\tau_{\omega})$
- $\Leftrightarrow B \supseteq IntCl_{\omega}B \Leftrightarrow B \text{ is semi-}\omega\text{-closed}$
- $\Leftrightarrow B \supseteq IntCl_{\delta}B \Leftrightarrow B \text{ is } \delta\text{- semi-closed}$
- $\Leftrightarrow B \supseteq Int_{\delta}ClB \Leftrightarrow B \supseteq Int_{\omega}Cl_{\delta}B$
- $\Leftrightarrow B \supseteq Int_{\delta}Cl_{\delta}B \Leftrightarrow B$ is semi-closed in (X, τ^{δ})

This proves the proposition.

Proposition 3.13 Let B be an $r^*\omega\delta$ -set in an ALC space. The followings are equivalent.

- (i) B is regular closed
- (ii) B is regular ω -closed
- (iii) B is regular closed in (X, τ_{ω})
- (iv) B is regular closed in (X, τ^{δ})

(v)
$$\mathbf{B} = ClInt_{\delta}\mathbf{A}$$

- (vi) $\mathbf{B} = Cl_{\delta}Int\mathbf{A}$
- (vii) $\mathbf{B} = C l_{\omega} I n t_{\delta} \mathbf{B}$

Proof. Let B be an $r^*\omega\delta$ -set in an ALC space. Then we have

 $Cl_{\omega}Int_{\delta}B = ClInt_{\delta}B = Cl_{\delta}Int_{\delta}B = Cl_{\delta}IntB = Cl_{\omega}IntB = Cl_{\omega}IntB = Cl_{\omega}Int_{\omega}B = ClInt_{\omega}B.$

Therefore B is regular closed \Leftrightarrow B = *ClInt*B \Leftrightarrow B = *ClInt*_{ω}B

 $\Leftrightarrow \mathbf{B} = Cl_{\omega}Int\mathbf{B} \Leftrightarrow \mathbf{B}$ is regular ω -closed

 \Leftrightarrow B = *Cl*_{\u03c0}*Int*_{\u03c0}B \Leftrightarrow B is regular closed in (X, $\tau_{\u03c0}$)

 \Leftrightarrow B = *Cl*_{δ}*Int*_{δ}B \Leftrightarrow B is regular closed in (X, τ^{δ})

 $\Leftrightarrow \mathbf{B} = ClInt_{\delta}\mathbf{B} \Leftrightarrow \mathbf{B} = Cl_{\delta}Int\mathbf{B} \Leftrightarrow \mathbf{B} = Cl_{\omega}Int_{\delta}\mathbf{B}$

Proposition 3.14 Let B be an $r^*\omega\delta$ -set in an ALC space. The followings are equivalent.

- (i) B is pre-closed
- (ii) B is pre- ω closed
- (iii) $B \supseteq ClInt_{\omega}B$

- (iv) B is pre-closed in (X, τ_{ω})
- (v) B is pre-closed in (X, τ^{δ})
- (vi) B is δ -pre-closed
- (vii) $B \supseteq Cl_{\delta}IntB$
- (viii) $B \supseteq Cl_{\omega}Int_{\delta}B$

Proof. Let B be an $r^*\omega\delta$ -set in an ALC space. Then we have

- B is pre-closed \Leftrightarrow B \supseteq *ClInt*B \Leftrightarrow B \supseteq *ClInt*_{ω}B
- $\Leftrightarrow B \supseteq Cl_{\omega}IntB \Leftrightarrow B \text{ is pre-}\omega\text{-closed}$

 \Leftrightarrow B \supseteq *Cl*_{\u03c0}*Int*_{\u03c0} B \Leftrightarrow B is pre-closed in (X, $\tau_{\u03c0}$)

- $\Leftrightarrow B \supseteq Cl_{\delta}Int_{\delta}B \Leftrightarrow B \text{ is pre-closed in } (X, \tau^{\delta})$
- $\Leftrightarrow B \supseteq ClInt_{\delta}B \Leftrightarrow B \text{ is } \delta\text{-pre-closed}$
- $\Leftrightarrow B \supseteq Cl_{\delta}IntB \Leftrightarrow B \supseteq Cl_{\omega}Int_{\delta}B$

Proposition 3.15 Let B be an $r^*\omega\delta$ -set in an ALC space. The followings are equivalent.

- (i) B is semi-open
- (ii) B is semi-ω-open

(iii)
$$B \subseteq Cl_{\omega}IntB$$

- (iv) B is semi-open in (X, τ_{ω})
- (v) B is semi-open in (X, τ^{δ})
- (vi) B is δ semi-open
- (vii) $B \subseteq Cl_{\delta}IntB$
- (viii) $B \subseteq Cl_{\omega}Int_{\delta}B$

Proof. Let B be an $r^*\omega\delta$ -set in an ALC space. Then we have

B is semi-open $\Leftrightarrow B \subseteq ClIntB \Leftrightarrow B \subseteq Cl_{\omega}IntB$

- $\Leftrightarrow B \subseteq ClInt_{\omega}B \Leftrightarrow B \text{ is semi-}\omega\text{-}open$
- $\Leftrightarrow B \subseteq Cl_{\omega}Int_{\omega}B \Leftrightarrow B$ is semi-open in (X, τ_{ω})
- $\Leftrightarrow B \subseteq Cl_{\delta}Int_{\delta}B \Leftrightarrow B \text{ is semi-open in } (X, \tau^{\delta})$
- $\Leftrightarrow B \subseteq ClInt_{\delta}B \Leftrightarrow B$ is δ -semi-open

 $\Leftrightarrow B \subseteq Cl_{\delta}IntB \Leftrightarrow B \subseteq Cl_{\omega}Int_{\delta}B$

REFERENCES

- Ahmad Al-Omari and Mohd Salmi Md Noorani 2007, 'Regular generalized ωclosed sets', *Int. J. Math. and Math. Sci.*, 11 pages, doi:10.1155/2007/16292.
- [2] Hdeib HZ 1982, 'ω-closed mappings', *Rev.Colomb.Mat.*, vol.16, no.3-4, pp.65-78.
- [3] Khalid Y. Al-Zoubi 2005, 'On generalized ω-closed sets', Int. J. Math. Math. Sci., vol.13, pp. 2011-2021.
- [4] Levine, N 1963, 'Semi-open sets and semi-continuity in topological spaces', *Amer. Math. Monthly*, vol.70, pp. 36-41.
- [5] Mashhour, AS, Abd El-Monsef, ME and El-Deeb, SN 1982, On pre-continuous and weak pre-continuous mappings', *Proc. Math. Phys. Soc. Egypt*, vol.53, pp. 47-53.
- [6] Murugesan, S 2014, 'On Rω-open sets', Journal of Advanced Studies in Topology. vol.5, no 3, pp. 24-27.
- [7] Park, JH, Lee, BY and Son, MJ 1997, On δ-semi-open sets in topological spaces, *J. Indian. Acad. Math.*, vol.19, no 1, pp. 59-67.
- [8] Stephen Willard 1970, 'General Topology' Addison Weseley,
- [9] Stone, M 1937, 'Applications of the theory of boolean rings to the general topology', *Trans. Amer. Math. Soc.*, vol. 41, pp.375-481.
- [10] Takashi Noiri, Ahmad Al-Omari and Mohd Salmi Md Noorani 2009, 'Weak forms of ω-open sets and decomposition of continuity' *European Journal of Pure and Applied Mathematics*, vol.2, no.1, pp.73-74.
- [11] Takashi Noiri, 2003, 'Remarks on δ-semi-open sets and δ-preopen sets' Demonstratio Mathematica, vol.36, no.4, pp.1007-1020.
- [12] Thangavelu, P, Rayshima, N, Rajan, C and Ravi, O (2017), The mixed structures of ω -closure and δ -closure in topological spaces, out of print.

[13] Velicko, NV 1968, 'H-closed topological spaces', Amer. Math. Soc. Transl., vol.78, no.2, pp.103-118.