E®
PRIME MEAN CORDIAL LABELING OF GRAPHS
Jeena. R. ${ }^{1}$ Dr. S. Asha ${ }^{2}$
${ }^{1}$ Research Scholar (Full time), Register Number: 21113112092015, Research Department of Mathematics, Nesamony Memorial Christian College, Marthandam, Kanniyakumari District, Tamil Nadu, India.
Affiliated to Manonmaniam Sundarnar University, Tirunelveli- 627012, Abishekapatti, Tamil Nadu, India.
Corresponding Email ID: vrjeena@gmail.com
${ }^{2}$ Assistant Professor, Research Department of Mathematics, Nesamony Memorial Christian College, Marthandam, Kanniyakumari District, Tamil Nadu, India, Affiliated to Manonmaniam Sundarnar University, Tirunelveli- 627012, Abishekapatti, Tamil Nadu, India.
Corresponding Email ID: ashanmcc @gmail.com

Abstract

Let $G=(V, E)$ be a graph with p vertices and q edges. A graph G is said to be a prime mean cordial labeling if there exists an injective function $f: V(G) \rightarrow\{0,1,2, \ldots, q\}$ such that the induced edge labeling $f^{*}: E(G) \rightarrow\{0,1\}$ defined by $f^{*}(u v)=\left\{\begin{array}{ll}1 & \text { if }\left[\frac{f(u)+f(v)}{2}\right] \\ 0 & \text { otherwise }\end{array}\right.$ is odd

 satisfying the condition that for every $v \in V(G)$ with $\operatorname{deg}(v) \geq 1, S_{v}=\sum\left\{f^{*}(e=u v) / u v \in\right.$ $E(G)\}$ is 1 or prime and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1, i, j \in\{0,1\}$ where $e_{f}(x)$ denotes the number of edges labeled with x. . A graph with prime mean cordial labeling is called prime mean cordial graph. In this paper prime mean cordiality of some graphs are discussed.Key words: Prime, Mean, Cordial, Mean Cordial, Prime Mean Cordial, Brush graph, Fusing.
Subject Classification: 05C78
DOI: 10.48047/ecb/2023.12.si13.111

Introduction

Graphs we consider here are simple, finite, connected and undirected. The vertex set and edge set of a graph G are $V(G)$ and $E(G)$ respectively. The concept of cordial labeling was introduced by Cahit in the year 1987. The concept of mean labeling was introduced by S. Somasundaram and R. Ponraj. The concept of prime mean labeling was introduced by K. Palani. Motivated from the above works, we introduced a new type of labeling called prime mean cordial labeling.

Definition :2.1.

Let $G=(V, E)$ be a graph with p vertices and q edges. A graph G is said to be a prime mean cordial labeling if there exists an injective function $f: V(G) \rightarrow\{0,1,2, \ldots, q\}$ such that the induced edge labeling $f^{*}: E(G) \rightarrow\{0,1\}$ defined by $f^{*}(u v)= \begin{cases}1 & \text { if }\left[\frac{f(u)+f(v)}{2}\right] \\ 0 & \text { otherwise odd }\end{cases}$ satisfying the condition that for every $v \in V(G)$ with $\operatorname{deg}(v) \geq 1, S_{v}=\sum\left\{f^{*}(e=u v) / u v \in\right.$ $E(G)\}$ is 1 or prime and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1, i, j \in\{0,1\}$ where $e_{f}(x)$ denotes the number of edges labeled with x. A graph with prime mean cordial labeling is called prime mean cordial graph.

Example: 1.2 A graph that admits a prime mean cordial labeling is given below:

Figure 1
Here $e_{f}(0)=3, e_{f}(1)=4$ and $S_{v}=1$ or prime.
Theorem: 1.3 The Brush graph $\boldsymbol{B}_{n}(\boldsymbol{n} \geq 3)$ is prime mean cordial graph
Proof:
Let $\boldsymbol{V}\left(\boldsymbol{B}_{\mathrm{n}}\right)=\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{\mathrm{n}}, \boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{\mathrm{n}}\right\}$ and
$E\left(B_{\mathbf{n}}\right)=\left\{\boldsymbol{u}_{\mathbf{i}} \boldsymbol{u}_{\mathbf{i}+\mathbf{1}}: \mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}-\mathbf{1}\right\} \cup\left\{\boldsymbol{u}_{\mathbf{i}} \boldsymbol{v}_{\mathbf{i}}: \mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}\right\}$
Define $V\left(B_{\mathrm{n}}\right) \rightarrow\{0,1,2, \ldots q\}$ as follows:
Case $(\mathbf{i}): n \equiv 0(\bmod 3)$
Let $n=3 t$
Define $f^{*}\left(u_{i} u_{i+1}\right)=0,1 \leq i \leq 3 t-1$

$$
f^{*}\left(u_{i} v_{i}\right)=1,1 \leq i \leq 3 t
$$

Then $e_{f}(0)=3 t-1, e_{f}(1)=3 t$
Therefore $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j \in\{0,1\}$
Case (ii): $n \equiv 1(\bmod 3)$

$$
\text { Let } n=3 t+1
$$

Define $f^{*}\left(u_{\mathrm{i}} u_{\mathrm{i}+1}\right)=0,1 \leq i \leq$
$3 t$
$f^{*}\left(u_{\mathrm{i}} v_{\mathrm{i}}\right)=1,1 \leq i \leq$
$3 t+1$
Then $e_{f}(0)=3 t, e_{f}(1)=3 t+1$
Therefore $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j \in\{0,1\}$
Case(iii): $n \equiv 2(\bmod 3)$

$$
\text { Let } n=3 t+2
$$

Define $f^{*}\left(u_{i} u_{i+1}\right)=0,1 \leq i \leq 3 t+1$

$$
f^{*}\left(u_{i} v_{i}\right)=1,1 \leq i \leq 3 t+2
$$

Then $e_{f}(0)=3 t+1, e_{f}(1)=3 t+2$
Therefore $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j \in\{0,1\}$
For $1 \leq i \leq n-1, f^{*}\left(e_{i}\right)=0$
For $1 \leq i \leq n, f^{*}\left(e_{i}^{\prime}\right)=1$
$S_{u_{1}}=f^{*}\left(e_{1}\right)+f^{*}\left(e_{1}^{\prime}\right)=1$
For $2 \leq i \leq n-1, S_{u_{i}}=f^{*}\left(e_{i-1}\right)+f^{*}\left(e_{i}\right)+f^{*}\left(e_{i}^{\prime}\right)=1$

$$
S_{u_{n}}=f^{*}\left(e_{n-1}\right)+f^{*}\left(e_{n}^{\prime}\right)=1
$$

For every $v \in V\left(B_{n}\right), n \geq 3, S_{v}$ is equal to 1 or prime.
Therefore f is a prime mean cordial labeling.
Hence $B_{n}, n \geq 3$ is prime mean cordial graph
Example :1.4 Prime mean cordial labeling of the Brush graph \boldsymbol{B}_{6} is given below:

Figure 2
Theorem: 1.5 The graph obtained by identifying (fusing) any two vertices in a brush graph B_{n} is a prime mean cordial graph.

Proof:

Let $\boldsymbol{V}\left(\boldsymbol{B}_{\mathrm{n}}\right)=\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots \boldsymbol{u}_{\mathrm{n}}, \boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots ., \boldsymbol{v}_{\mathrm{n}}\right\}$
$E\left(B_{\mathrm{n}}\right)=\left\{u_{\mathrm{i}} u_{\mathrm{i}+1}: 1 \leq i \leq n-1\right\} \cup\left\{u_{\mathrm{i}}, v_{\mathrm{i}}: 1 \leq i \leq n\right\}$
Let G_{k} be the graph obtained by fusing any two vertices in B_{n}. Here $\left|V\left(G_{\mathrm{k}}\right)\right|=$ $2 n-1$.

Define $V\left(B_{\mathrm{n}}\right) \rightarrow\{0,1,2, \ldots q\}$ as follows:
Case (i): $n \equiv 0(\bmod 3)$
Let $n=3 t$
Define $f^{*}\left(u_{i} u_{i+1}\right)=0,1 \leq i \leq 3 t-2$

$$
f^{*}\left(u_{i} v_{i}\right)=1,1 \leq i \leq 3 t-1
$$

Then $f^{*}\left(u_{n} v_{n}\right)=0$
Here $e_{f}(0)=3 t-1, e_{f}(1)=3 t-1$
Therefore $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j \in\{0,1\}$
Case (ii): $n \equiv 1(\bmod 3)$

$$
\text { Let } n=3 t+1
$$

Define $f^{*}\left(u_{i} u_{i+1}\right)=0,1 \leq i \leq$
$3 t-1$

$$
\begin{aligned}
f^{*}\left(u_{i} v_{i}\right) & =1,1 \leq i \leq 3 t \\
f^{*}\left(u_{n} v_{n}\right) & =0
\end{aligned}
$$

Here $e_{f}(0)=3 t, e_{f}(1)=3 t$
Therefore $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j \in\{0,1\}$
Case (iii): $n \equiv 2(\bmod 3)$
Let $n=3 t+2$
Define $f^{*}\left(u_{\mathrm{i}} u_{\mathrm{i}+1}\right)=0,1 \leq \mathrm{i} \leq 3 \mathrm{t}$

$$
\begin{aligned}
& f^{*}\left(u_{i} v_{i}\right)=1,1 \leq i \leq 3 t+1 \\
& f^{*}\left(u_{n} v_{n}\right)=0
\end{aligned}
$$

Here $e_{f}(0)=3 t+1, e_{f}(1)=3 t+1$
Therefore $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j \in\{0,1\}$

For $1 \leq i \leq n-2, f^{*}\left(e_{i}\right)=0$
For $1 \leq i \leq n-1, f^{*}\left(e_{i}^{\prime}\right)=1$
Then $f^{*}\left(e_{n}^{\prime}\right)=0$
Now $S_{u_{1}}=f^{*}\left(e_{1}\right)+f^{*}\left(e_{1}^{\prime}\right)=1$
For $2 \leq i \leq n-2, S_{u_{i}}=f^{*}\left(e_{i-1}\right)+f^{*}\left(e_{i}\right)+f^{*}\left(e_{i}^{\prime}\right)=1$

$$
S_{u_{n-1}}=f^{*}\left(e_{n-2}\right)+f^{*}\left(e_{n-1}^{\prime}\right)+f^{*}\left(e_{n}^{\prime}\right)=1
$$

Therefore for every $v \in V\left(B_{n}\right), S_{v}$ is equal to 1 or prime.
Therefore f is a prime mean cordial labeling.
Hence B_{n} is prime mean cordial graph.

Example: 1.6

Figure 3. Fusion of $\boldsymbol{u}_{\mathbf{5}}$ and $\boldsymbol{u}_{\mathbf{6}}$ in $\boldsymbol{B}_{\mathbf{6}}$
Theorem: 1.7 A graph $G=(V, E)$ attaching $K_{l, 2}$ to each pendant vertex of comb graph forms prime mean
cordialgraph

Proof:

Let $V\left((P n \odot) K_{1} \odot K_{1,2}\right)=\left\{u_{i}, v_{i}, x_{i}: 1 \leq i \leq n\right\}$ and
$E\left(\left(P n \odot K_{1}\right) \odot K_{1,2}\right)=\left\{u_{i} u_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{i}, v_{i} y_{i}, v_{i} x_{i}: 1 \leq i \leq n\right\}$
Define $V\left(\left(\operatorname{Pn} \odot K_{1}\right) \odot K_{1,2}\right) \rightarrow\{0,1,2, \ldots q\}$ as follows:
Case (i): $n \equiv 0(\bmod 3)$

$$
\text { Let } n=3 t
$$

Define $f^{*}\left(u_{\mathrm{i}} u_{\mathrm{i}+1}\right)=0,1 \leq \mathrm{i} \leq 3 t-1$
$f^{*}\left(u_{i} v_{i}\right)=1,1 \leq i \leq 3 t$ $f^{*}\left(v_{\mathrm{i}} x_{\mathrm{i}}\right)=0,1 \leq \mathrm{i} \leq 3 t$ $f^{*}\left(v_{\mathrm{i}} y_{i}\right)=1,1 \leq \mathrm{i} \leq$ 3t
Here $e_{f}(0)=6 t-1, e_{f}(1)=6 t$
Therefore $\left|e_{f}(i)-e_{f}(j)\right| \leq 1 \quad$ for all $i, j \in$ $\{0,1\}$
Case (ii): $n \equiv 1(\bmod 3)$
Let $n=3 t+1$
Define $f^{*}\left(u_{\mathrm{i}} u_{\mathrm{i}+1}\right)=1 \leq i \leq 3 t$
$f^{*}\left(u_{\mathrm{i}} v_{i}\right)=1 \leq i \leq 3 t+1$
$f^{*}\left(v_{i} x_{\mathrm{i}}\right)=0, \quad 1 \leq \mathrm{i} \leq$
$3 t+1$
$f^{*}\left(v_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}\right)=1,1 \leq \mathrm{i} \leq$
$3 t+1$
Here $e_{f}(0)=6 t+1, e_{f}(1)=6 t+2$
Therefore $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j \in\{0,1\}$

Case (iii): $n \equiv 2(\bmod 3)$
Let $n=3 t+2$
Define $f^{*}\left(u_{\mathrm{i}} u_{\mathrm{i}+1}\right)=0,1 \leq \mathrm{i} \leq 3 t+$
$1 f^{*}\left(u_{\mathrm{i}} v_{\mathrm{i}}\right)=1,1 \leq \mathrm{i} \leq 3 t+2$
$f^{*}\left(v_{\mathrm{i}} x_{\mathrm{i}}\right)=0,1 \leq \mathrm{i} \leq$
$3 t f^{*}\left(v_{\mathrm{i}} y_{i}\right)=1,1 \leq \mathrm{i}$
$\leq 3 t$
Here $e_{f}(0)=6 t+1, e_{f}(1)=6 t+2$
Therefore $e_{f}(i)-e_{f}(j) \mid \leq 1$ for all $i, j \in\{0,1\}$
For $1 \leq i \leq n-1, f^{*}\left(e_{i}\right)=0$
For $1 \leq i \leq n, f^{*}\left(e_{i}^{\prime}\right)=1$
For $1 \leq i \leq n, f^{*}(e)=0$
$S_{u_{1}}=f^{*}\left(e_{1}\right)+f^{*}\left(e_{1}^{\prime}\right)=1$
For $2 \leq i \leq n-1, S_{u_{i}}=f^{*}\left(e_{i-1}\right)+f^{*}\left(e_{i}\right)+f^{*}\left(e_{i}^{\prime}\right)=1$

$$
S_{u_{n}}=f^{*}\left(e_{n-1}\right)+f^{*}\left(e_{n}^{\prime}\right)=1
$$

For $1 \leq i \leq n, \quad S_{v_{i}}=f^{*}\left(e_{1}^{\prime}\right)+f^{*}\left(e_{i}^{\prime \prime}\right)+f^{*}\left(e_{i}^{\prime \prime \prime}\right)=2$
Therefore for every $v \in V\left(\left(\operatorname{Pn} \odot K_{1}\right) \odot K_{1,2}\right), S_{v}$ is equal to 1 or prime.
Therefore f is a prime mean cordial labeling.
Hence $\left.\left(\operatorname{Pn} \odot K_{1}\right) \odot K_{1,2}\right)$ is a prime mean cordial graph.

Example: 1.8

Prime mean cordial labelling of $\left(P_{4} \odot \mathrm{~K}_{1}\right) \odot \mathrm{K}_{1,2}$

Theorem: 1.9. The graph $T L_{n} \odot K_{1}$ is prime mean cordial.

Proof:

Let $T L_{n}$ be the triangular ladder.
Let $V\left(T L_{n} \odot K_{1}\right)=\left\{u_{i}, v_{i}, x_{i}, y_{i}: 1 \leq i \leq n\right\}$
$E\left(T L_{n} \odot K_{1}\right)=\left\{u_{i} u_{i+1}, v_{i} v_{i+1}: 1 \leq i \leq n-1\right\} \cup \quad\left\{u_{i} v_{i}, u_{i} x_{i}, v_{i} y_{i}: 1 \leq i \leq n-\right.$
$1\} \cup\left\{u_{i} v_{i+1}: 1 \leq i \leq n-1\right\}$
Define $V\left(T L_{n} \odot K_{1}\right) \rightarrow\{0,1,2, \ldots, q\}$ as follows:
Case (i): $n \equiv 0(\bmod 3)$
Let $n=3 t$
Define $f^{*}\left(u_{i} u_{i+1}\right)=0,1 \leq i \leq 3 t-1$

$$
\begin{aligned}
& f^{*}\left(v_{i} v_{i+1}\right)=1,1 \leq i \leq 3 t+1 \\
& f^{*}\left(u_{i} x_{i}\right)=1,1 \leq i \leq 3 t
\end{aligned}
$$

$$
\begin{aligned}
& f^{*}\left(u_{i} y_{i}\right)=1,1 \leq i \leq 3 t \\
& f^{*}\left(u_{i} v_{i}\right)=0,1 \leq i \leq 3 t \\
& f^{*}\left(u_{i} v_{i+1}\right)=0,1 \leq i \leq 3 t-1
\end{aligned}
$$

Then $e_{f}(0)=9 t-2$ and $e_{f}(1)=9 t-1$
Therefore $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j \in\{0,1\}$
Case (ii): $\mathrm{n} \equiv 1(\bmod 3)$

$$
\text { Let } n=3 t+1
$$

Define $f^{*}\left(u_{i} u_{i+1}\right)=0,1 \leq i \leq 3 t$

$$
\begin{aligned}
& f^{*}\left(v_{i} v_{i+1}\right)=1,1 \leq i \leq 3 t \\
& f^{*}\left(u_{i} x_{i}\right)=1,1 \leq i \leq 3 t+1 \\
& f^{*}\left(u_{i} y_{i}\right)=1,1 \leq i \leq 3 t+1 \\
& f^{*}\left(u_{i} v_{i}\right)=0,1 \leq i \leq 3 t \\
& f^{*}\left(u_{i} v_{i+1}\right)=0,1 \leq i \leq 3 t
\end{aligned}
$$

Then $e_{f}(0)=9 t+1$ and $e_{f}(1)=9 t+2$
Therefore $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j \in\{0,1\}$
Case (iii): $n \equiv 2(\bmod 3)$
Let $n=3 t+2$
Define $f^{*}\left(u_{i} u_{i+1}\right)=0,1 \leq i \leq 3 t+1$

$$
\begin{aligned}
& f^{*}\left(v_{i} v_{i+1}\right)=1,1 \leq i \leq 3 t+1 \\
& f^{*}\left(u_{i} x_{i}\right)=1,1 \leq i \leq 3 t+2 \\
& f^{*}\left(v_{i} y_{i}\right)=1,1 \leq i \leq 3 t+2 \\
& f^{*}\left(u_{i} v_{i}\right)=0,1 \leq i \leq 3 t+2 \\
& f^{*}\left(u_{i} v_{i+1}\right)=0,1 \leq i \leq 3 t+1
\end{aligned}
$$

Then $e_{f}(0)=9 t+4$ and $e_{f}(1)=9 t+5$
Therefore $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $i, j \in\{0,1\}$
For $1 \leq i \leq n-1, f^{*}\left(e_{i}\right)=0$
For $n \leq i \leq 2 n-2, f^{*}\left(e_{i}\right)=1$
For $1 \leq i \leq n, f^{*}\left(e_{i}^{\prime}\right)=0$
For $1 \leq i \leq n, f^{*}\left(e_{i}^{\prime \prime}\right)=0$
For $1 \leq i \leq 2 n-2, f^{*}\left(e_{i}^{\prime \prime \prime}\right)=0$
Then $S_{u_{1}}=f^{*}\left(e_{1}\right)+f^{*}\left(e_{1}^{\prime}\right)+f^{*}\left(e_{1}^{\prime \prime \prime}\right)+f^{*}\left(e_{2}^{\prime \prime \prime}\right)=1$
For $2 \leq i \leq n-1, S_{u_{i}}=f^{*}\left(e_{i-1}\right)+f^{*}\left(e_{i}\right)+f^{*}\left(e_{i}^{\prime}\right)+f^{*}\left(e_{2 i-1}^{\prime \prime \prime}\right)+f^{*}\left(e_{2 i}^{\prime \prime \prime}\right)=1$
Then $S_{u_{n}}=f^{*}\left(e_{n-1}\right)+f^{*}\left(e_{n}^{\prime}\right)+f^{*}\left(e_{2 n-1}^{\prime \prime \prime}\right)=1$
Now $S_{v_{1}}=f^{*}\left(e_{n}\right)+f^{*}\left(e_{1}^{\prime \prime}\right)+f^{*}\left(e_{1}^{\prime \prime \prime}\right)=1$
For $1 \leq i \leq n-2, S_{v_{i+1}}=f^{*}\left(e_{3 i}\right)+f^{*}\left(e_{3 i+1}\right)+f^{*}\left(e_{i+2}^{\prime \prime \prime}\right)+f^{*}\left(e_{i+1}^{\prime \prime}\right)+f^{*}\left(e_{i+1}^{\prime \prime \prime}\right)=1$
Then $S_{v_{n}}=f^{*}\left(e_{2 n-2}\right)+f^{*}\left(e_{n}^{\prime \prime}\right)+f^{*}\left(e_{2 n-2}^{\prime \prime \prime}\right)+f^{*}\left(e_{2 n-1}^{\prime \prime \prime}\right)=1$
Therefore for every $v \in V\left(T L_{n} \odot K_{1}\right), S_{v}$ is equal to 1 or prime.

Therefore f is a prime mean cordial labeling.
Hence $T L_{n} \odot K_{1}$ is a prime mean cordial graph.
Example:2.0

Figure 5. $\boldsymbol{T} \boldsymbol{L}_{\mathbf{3}} \odot \boldsymbol{K}_{\mathbf{1}}$

Conclusion

In this paper we introduced the concept of prime mean cordial labeling and studied the prime mean cordial labeling behavior of few graphs.

References

1. A. Edward Samuel and S. Kalaivani, Prime Labeling to Brush Graphs, International Journal of Mathematics Trends and Technology, Vol. 55, No. 44, 2018.
2. Linta K Wilson and H. Jini, K-prime labelling of ladder Related Corona Graphs, Stochastic Modeling \& Applications, Vol. 25, No: 3, 2022.
3. S.Dhanalakshmi and N.Parvathi, Mean square cordial labeling related to some acyclic graphs and its approximations, Journal of Physics : Conference Series,Vol 1000\{1\},No:012040, 2018.
4. J .A.Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinotorics 1(2018), DS6.
5. Mehul Chaurasiya Dhvanik Zala, Narendra Chotaliya and Mehul Rupani, Study on KPrime labelling of some graphs, International Journal of All Research Education and Scientific Methods, Vol. 9, No. 01, 2021.
6. K.Palani, G Suganya, T. M. Velammal and A. Sundari, prime mean labeling of some graphs, Adalya Journal. 2020
7. Cahit.I Cordial graphs A Weaker Version of Graceful and Harmonius Graphs,Ars Combinatoria,Vol.23, No.3,pp.201-207,1987
8. Raja Ponraj,Muthirulan SivaKumar,Murugesan Sundaram Mean Cordial Labeling of Graphs,Open Journal of Discrete Mathematics,Vol.2, No 145-148,2012
