Some Results on Energies of join of Complete Graphs Dr.M.Deva Saroja ${ }^{1}$, P.Ponmani ${ }^{2}$
${ }^{1}$ Research Supervisor, Assistant Professor.
${ }^{2}$ Reg. No : 19221172092015,Research Scholar
${ }^{1,2}$ PG and Research Department of Mathematics, Rani Anna Government College for Women,Tirunelveli-627008,Affiliated to Manonmaniam Sundaranar University, Abishekapatti,-627012, Tamilnadu, India.
E-mail : ${ }^{1}$ mdsaroja@gmail.com, ${ }^{2}$ jesus25mani@gmail.com

Abstract

: The energy for the adjacency matrix, degree sum matrix, degree sum adjacency matrix, and degree square sum matrix of $J_{n}\left(K_{p}\right)$ are computed in this work.

Keywords: energy, degree sum energy, degree sum adjacency energy, degree square sum energy, join of complete graphs K_{p}

2010 Mathematics Subject Classification: 05C50.

1. Introduction and Preliminaries

In 1978, I.Gutman was introduced the new concept energy in graph theory. Let G be a simple, undirected graph with p vertices and q edges. We adhere to the definitions provided in [9], [14], [17], and [2] for energy, degree sum energy (ie) $E_{D S}(G)$, degree sum adjacency energy $D S_{A} E(G)$, and degree square sum energy $E_{D S S}(G)$, respectively.

Main Results

Lemma 2.1 [5].

Let $\mathrm{M}, \mathrm{N}, \mathrm{P}$ and Q be matrices with M invertible, then $\left[\begin{array}{ll}M & N \\ P & Q\end{array}\right]=\left|\mathrm{M} \| \mathrm{Q}-\mathrm{P} \mathrm{M}^{-1} \mathrm{~N}\right|$

Lemma 2.2[5].

Let $\mathrm{M}, \mathrm{N}, \mathrm{P}$ and Q be matrices. Let $\mathrm{S}=\left[\begin{array}{ll}M & N \\ P & Q\end{array}\right]$ if M and P commutes then $|S|=|\mathrm{M} \mathrm{Q}-\mathrm{P} \mathrm{N}|$.

Lemma 2.3 [5].

If $A\left(K_{p}\right)$ is the adjacency matrix of K_{p} and the Spectrum of $A\left(K_{p}\right)$ are p-1 and $(-1)^{p-1}$ then $A^{2}\left(K_{p}\right)=(p-2) A\left(K_{p}\right)+(p-1) I_{p}$.

Definition 2.4:

Let $K_{p}, p \geq 2$ be complete graphs with p vertices. We take $n \geq 2$ number of complete graphs K_{p} and joining every first vertices together, every second vertices together and joining upto every p vertices together.Then the resulting graph is called join of complete regular graphs K_{p} with order $p n, \frac{p^{2} n-2 p n+p n^{2}}{2}$ edges, and regular of degree $d=p+n-2$. It is denoted by $J_{n}\left(K_{p}\right)$.

Theorem 2.5

If $J_{n}\left(K_{p}\right)$ is the join of $n \geq 2$ number of complete graphs K_{p}. Then $S_{p}\left(J_{n}\left(K_{p}\right)\right)=\left(\begin{array}{cccr}p+n-2 & n-2 & p-2 & -2 \\ 1 & p-1 & n-1 & n p-n-p+1\end{array}\right)$ and $E\left(J_{n}\left(K_{p}\right)\right)=$ $4 n p-4 p-4 n+4$.

Proof:
Let $J_{n}\left(K_{p}\right)$ be the join of $n \geq 2$ number of complete graphs.
Then the adjacency matrix of $J_{n}\left(K_{p}\right)$ is
$A\left(J_{n}\left(K_{p}\right)\right)=\left(\begin{array}{cccc}A\left(K_{p}\right) & I_{p} & \cdots & I_{p} \\ I_{p} & A\left(K_{p}\right) & \cdots & I_{p} \\ \vdots & \vdots & \ddots & \vdots \\ I_{p} & I_{p} & \cdots & A\left(K_{p}\right)\end{array}\right)$
and the characteristic polynomial of $A\left(J_{n}\left(K_{p}\right)\right)$ is
$\left|\lambda I_{p n}-A\left(J_{n}\left(K_{p}\right)\right)\right|=\left|\begin{array}{ccccc}\lambda I_{p}-A\left(K_{p}\right) & -I_{p} & & \cdots & -I_{p} \\ -I_{p} & \lambda I_{p}-A\left(K_{p}\right) & & \cdots & -I_{p} \\ \vdots & \vdots & \ddots & & \vdots \\ -I_{p} & -I_{p} & \cdots & \lambda I_{p}-A\left(K_{p}\right)\end{array}\right|$
By using elementary transformations $C_{1} \rightarrow C_{1}+C_{2}+\cdots+C_{n}$ and $R_{i} \rightarrow R_{i}-$ $R_{1}, i=2,3, \ldots, n$. We get

$$
\begin{aligned}
& \left|\lambda I_{p n}-A\left(J_{n}\left(K_{p}\right)\right)\right| \\
& =\left|\begin{array}{ccccc}
(\lambda-(n-1)) I_{p}-A\left(K_{p}\right) & -I_{p} & & \cdots & -I_{p} \\
0 & (\lambda+1) I_{p}-A\left(K_{p}\right) & & \cdots & 0 \\
\vdots & \vdots & \ddots & & \vdots \\
0 & 0 & \cdots & (\lambda+1) I_{p}-A\left(K_{p}\right)
\end{array}\right| \\
& =\left((\lambda-(n-1)) I_{p}-A\left(K_{p}\right)\right)\left((\lambda+1) I_{p}-A\left(K_{p}\right)\right)^{n-1}
\end{aligned}
$$

By using lemma 2.3, $S_{p}\left(J_{n}\left(K_{p}\right)\right)=\left(\begin{array}{cccr}p+n-2 & n-2 & p-2 & -2 \\ 1 & p-1 & n-1 & n p-n-p+1\end{array}\right)$ and $E\left(J_{n}\left(K_{p}\right)\right)=4 n p-4 p-4 n+4$.

Theorem 2.6

The adjacency matrix of complete graphs of order p is multiplied twice by its own degree to obtain the degree sum matrix if G is a regular graph with p vertices.

Proof:

Let G be a d - regular graphs with p vertices then degree sum matrix of G is sum of two degrees v_{i} and v_{j} if $i \neq j$ otherwise zero.

Therefore $D S(G)=\left(\begin{array}{cccc}0 & 2 d & \cdots & 2 d \\ 2 d & 0 & \cdots & 2 d \\ \vdots & \vdots & \ddots & \vdots \\ 2 d & 2 d & \ldots & 0\end{array}\right)$
We know that the main diagonal of the adjacency matrix of K_{p} is 0 and every other entry is 1.As a result ,the aforementioned matrix is equal to a multiple of $2 d$ by the corresponding adjacency matrix of complete graphs, where d is that matrix's degree. Hence proved.

Theorem 2.7

If $J_{n}\left(K_{p}\right)$ is join of complete regular graphs then $S_{p}\left(D S\left(J_{n}\left(K_{p}\right)\right)\right)=$ $\left[\begin{array}{cc}2 d(p n-1) & -2 d \\ 1 & p n-1\end{array}\right]$ and $\quad E_{D S}\left(J_{n}\left(K_{p}\right)\right)=4 d(p n-1)$.

Proof:

By theorem 2.6, DS $\left(J_{n}\left(K_{p}\right)\right)=2 d A\left(K_{p}\right)$.
Then the characteristic polynomial $D S\left(J_{n}\left(K_{p}\right)\right)$ is

$$
\left|\mu I_{p n}-D S\left(J_{n}\left(K_{p}\right)\right)\right|=\left|\mu I_{p n}-2 d A\left(K_{p n}\right)\right| .
$$

By using lemma 2.3, $\left|\mu I_{p n}-D S\left(J_{n}\left(K_{p}\right)\right)\right|=(\mu-2 d(p n-1))(\mu+2 d)^{p n-1}$
Therefore $S_{p}\left(D S\left(J_{n}\left(K_{p}\right)\right)\right)=\left[\begin{array}{cc}2 d(p n-1) & -2 d \\ 1 & p n-1\end{array}\right]$ and $\quad E_{D S}\left(J_{n}\left(K_{p}\right)\right)=$ $4 d(p n-1)$.

Theorem 2.8

If G is a regular graph with p vertices then the degree sum adjacency matrix is the adjacency matrix of that graph of order p multiplied by twice the degree of that matrix.

Proof:

Let G be a d - regular graphs with p vertices then degree sum matrix of G is sum of two degrees v_{i} and v_{j} if v_{i} is adjacent to v_{j} and 0 otherwise.

Therefore $D S_{A}(G)=\left(\begin{array}{cccc}0 & 2 d a_{12} & \cdots & 2 d a_{1 p} \\ 2 d a_{21} & 0 & \cdots & 2 d a_{2 p} \\ \vdots & \vdots & \ddots & \vdots \\ 2 d a_{p 1} & 2 d a_{p 2} & \cdots & 0\end{array}\right)$

$$
=2 d\left(\begin{array}{cccc}
0 & a_{12} & \cdots & a_{1 p} \\
a_{21} & 0 & \ldots & a_{2 p} \\
\vdots & \vdots & \ddots & \vdots \\
a_{p 1} & a_{p 2} & \ldots & 0
\end{array}\right)
$$

$D S_{A}(G)=2 d A(G)$, where $A(G)$ is the adjacency matrix of G.

Hence result.

Theorem 2.9

Consider the graph $J_{n}\left(K_{p}\right)$ then
$S_{p}\left(D S_{A}\left(J_{n}\left(K_{p}\right)\right)\right)=\left(\begin{array}{cclr}2 d^{2} & 2 d(n-2) & 2 d(p-2) & -4 d \\ 1 & p-1 & n-1 & n p-n-p+1\end{array}\right) \quad$ and
$D S_{A} E\left(J_{n}\left(K_{p}\right)\right)=2 d^{2}+8 p d n-10 d n+8 d-6 d p-4 p+4$.

Proof:

Let $J_{n}\left(K_{p}\right)$ be join of complete graphs and $\beta=\left\{\beta_{1}, \beta_{2}, \ldots \beta_{p n}\right\}$ be the eigen values of degree sum adjacency matrix of $J_{n}\left(K_{p}\right)$.

By using theorem 2.8, $D S_{A}\left(J_{n}\left(K_{p}\right)\right)=2 d A\left(J_{n}\left(K_{p}\right)\right)$
By using theorem $2.5,\left|\beta I_{p n}-D S_{A}\left(J_{n}\left(K_{p}\right)\right)\right|=\left(\beta-2 d^{2}\right)(\beta-2 d(n-$
2) $p-1(\beta-2 d p-2) n-1(\beta+4 d) p n-p-n+1$.

Therefore
$S_{p}\left(D S_{A}\left(J_{n}\left(K_{p}\right)\right)\right)=\left(\begin{array}{cclr}2 d^{2} & 2 d(n-2) & 2 d(p-2) & -4 d \\ 1 & p-1 & n-1 & n p-n-p+1\end{array}\right)$ and
$D S_{A} E\left(J_{n}\left(K_{p}\right)\right)=2 d^{2}+8 p d n-10 d n+8 d-6 d p-4 p+4$.
Theorem 2.10
Let G be a regular graph with p vertices then $\operatorname{DSS}(G)=2 d^{2} A\left(K_{p}\right)$.

Proof:

If $i \neq j$ then the degree square sum matrix of G is equal to the sum of the squares of the degrees corresponding to v_{i} and v_{j} and 0 otherwise.

Therefore $\operatorname{DSS}(G)=\left[\begin{array}{cccc}0 & 2 d^{2} & \cdots & 2 d^{2} \\ 2 d^{2} & 0 & \cdots & 2 d^{2} \\ \vdots & \vdots & \ddots & \vdots \\ 2 d^{2} & 2 d^{2} & \cdots & 0\end{array}\right]=2 d^{2} A\left(K_{p}\right)$.
Hence $\operatorname{DSS}(G)=2 d^{2} A\left(K_{p}\right)$.

Theorem 2.11

If $J_{n}\left(K_{p}\right)$ is join of complete regular graphs then $S_{p}\left(\operatorname{DSS}\left(J_{n}\left(K_{p}\right)\right)\right)=$ $\left[\begin{array}{cc}2 d^{2}(p n-1) & -2 d^{2} \\ 1 & p n-1\end{array}\right]$ and $\quad E_{D S S}\left(J_{n}\left(K_{p}\right)\right)=4 d^{2}(p n-1)$.

Proof:

By using theorem 2.10, $\operatorname{DSS}\left(J_{n}\left(K_{p}\right)\right)=2 d^{2} A\left(K_{p}\right)$.
Then the characteristic polynomial $\operatorname{DSS}\left(J_{n}\left(K_{p}\right)\right)$ is
$\left|\alpha I_{p}-\operatorname{DSS}\left(J_{n}\left(K_{p}\right)\right)\right|=\left|\alpha I_{p}-2 d^{2} A\left(K_{p}\right)\right|$.
By using lemma 2.3, $S_{p}\left(\operatorname{DSS}\left(J_{n}\left(K_{p}\right)\right)\right)=\left[\begin{array}{cc}2 d^{2}(p n-1) & -2 d^{2} \\ 1 & p n-1\end{array}\right]$
Therefore $E_{D S S}\left(J_{n}\left(K_{p}\right)\right)=4 d^{2}(p n-1)$.

Observations:

The following table gives the details of join of 3 number of complete graphs with 4 vertices.

S.No	Matrix	Eigen value	Energy
1	Adjacency Matrix	$5,-2,-2,-2,-2,-2$, $-2,2,2,1,1,1$	24
2	Degree Sum Matrix	$110,-10,-10$, $-10,-10,-10$, $-10,-10,-10,-10$,	220
3	Degree Sum	$-10,-10$	
Adjacency	Matrix	$-20,-20,-20,-20$,	240

4	Degree Square	$550,-50,-50$,	1100
Sum Matrix	$-50,-50,-50,-$		
		$50,-50,-50$,	
$-50,-50,-50$			

References

[1] C.Adiga and M.Smitha ,"On maximum degree energy of a graph", International Journal of Contemporary Mathematical Sciences,Vol.4,no.8.,pp.385-396,2009.
[2] Basavanagoud, B. And E.Chitra, "Degree Square Sum Energy of a Graphs",International .Journal.of mathematics and its Applications.6(2-B) (2018),193205.
[3]H.J.A. Bondy and Moorthy,Graph theory with applications, The MacMillan PRESS Limited.
[4] F.Buckley ,F.Harary,"Distance in Graphs",Addison-Wesley,Redwood, 1990.
[5] Cvetkovic D.M.Doob M.Sachs H , Spectra of graphs,Academic Press,New York,1980.
[6] D.Cvetkovic,P.Rowlinson and S.Simic, An introduction to the theory of Graph Spectra,Cambridge University Press 2010.
[7] M.Deva Saroja and M.S.Paulraj,"Equienergetic Regular Graphs", International Journal of Algorithms , Computing and Mathematics,Vol.3,No.3,August 2010.
[8] M.Deva Saroja ,Spectra and energy of some line graphs, Proceedings of International Conferences on Recent Advances in Mechanical engg (ICRAME2010)89, April 2010.
[9]Gutman.I,"The energy of a graph",Ber.Math.Stat.Forschungsz.Graz, 03(1978)pp.122.
[10] F.Harary, Graph theory , Addision-Wesley,Massachusetts,(1972).
[11] Harichandra S.Ramane, Sumedha S.Shinde,Degree exponent polynomial and degree exponent energy of graphs,Indian Journal Discrete Math.,vol.2,No.1,pp.01-07 Academy of Discrete Mathematics and Applications,India.
[12] Ivan Gutman,The energy of a graph old and new results.
[13]Jog ,S. and Kotambari.R."Degree sum energy of some graphs",Annals of Pure and Appl.Math.11(1)(2016),17-27.
[14]Sumedha S.Shinde,Narayan Swamy,Shaila B Gudimani,H.S.Ramane,Bounds for degree sum adjacency eigenvalues of a graph interms of Zagreb indices, Computer science journal of moldova, Vol.29,No.2(86)2021.
[15] Sudhir R Jog, Prabhakar R Hampiholi and ,Topics in Matrix Analysis,Cambridge University Press,Cambridge,UK,1991.
[16] Sunilkumar M.Hosamani,HarishchandraS.Ramane, On degree sum energy of a graph,European journal of Pure and Applied Mathematics,(2016)
[17] D.B.West,Introduction to graph theory, 2nd ed.,Prentice Hall of India, 2001.

