On \$-Closed Sets in $\mathrm{Bi}^{`}$ - Cech Closure Spaces

Saranya. \mathbf{S}^{a}, Ramya. \mathbf{N}^{b},
a - Department of Mathematics, CMR University, Bangalore, India.
Email: saranya.subbaiyan@gmail.com
b-Department of Mathematics. Sri Shakthi Institute of Engineering \& Technology. Coimbatore, Tamil Nadu, India. Email: ramyanagaraj144@gmail.com

Abstract

In this article, the idea of a $\$$-closed set in a bi - ${ }^{\sim}$ Cech closure space is introduced, and some characterizations and features are examined. Additionally, the idea of ${ }_{\$} \mathrm{C}_{0}$ bi ${ }^{`}$ Cech spaces and ${ }_{\$} \mathrm{C}_{1}$ bi- ${ }^{`}$ Cech spaces are introduced, and their fundamental features are researched.

Mathematics Subject Classification: 54A05, 54D10, 54F65, 54G05.

Keywords: bi- ${ }^{`}$ Cech closure operator, bi- ${ }^{`}$ Cech closure spaces, bi- ${ }^{`}$ Cech- $\$$ closed sets

1. Introduction

Cech closure spaces were introduced by ${ }^{`}$ Cech [3]. Numerous authors have since researched them $[2,4,5,6,7,8,11,12,13,14]$. In Cech's method, the operator satisfies the Kuratowski axiom idempotent requirement. This requirement does not have to be true for each set C of M . The operator becomes a topological closure operator when both of these conditions are satisfied. So, a topological space is a generalization of the idea of closure space. The idea of a gs-closed set was developed by Arya [1] et al. to examine various topological features. Hammer deserves credit for a proper description of closure functions; see, for instance, [10] and Gnilka [8]. The idea of bi - ${ }^{`}$ Cech -\$ closed sets and some of its attributes are covered in this research.

2. Preliminaries

Definition: 2.1. [4] Two functions k_{1} and k_{2} from power set M to itself are called bi- ${ }^{〔} \mathrm{Cech}$ closure operators (simply bi-closure operators) for M if they satisfy the following properties.
(i) $\mathrm{k}_{1}(\varphi)=\varphi$ and $\mathrm{k}_{2}(\varphi)=\varphi$
(ii) $\mathrm{C} \subset \mathrm{k}_{1}(\mathrm{C})$ and $\mathrm{C} \subset \mathrm{k}_{2}(\mathrm{C})$ for any set $\mathrm{C} \subseteq \mathrm{M}$
(iii) $\mathrm{k}_{1}(\mathrm{C} \cup \mathrm{D})=\mathrm{k}_{1}(\mathrm{C}) \cup \mathrm{k}_{1}(\mathrm{D})$ and $\mathrm{k}_{2}(\mathrm{C} \cup \mathrm{D})=\mathrm{k}_{2}(\mathrm{C}) \cup \mathrm{k}_{2}(\mathrm{D})$ for any $\mathrm{C}, \mathrm{D} \subseteq \mathrm{M}$
($\mathrm{M}, \mathrm{k}_{1}, \mathrm{k}_{2}$) is called bi- ${ }^{`}$ Cech closure space.
Example:2.1. Let $\mathrm{M}=\{5,6,7\}$ and define a closure operator k_{1} on M by
$\mathrm{k}_{1}(\{5\})=\{5\}, \mathrm{k}_{1}(\{6\})=\{6,7\}, \mathrm{k}_{1}(\{7\})=\mathrm{k}_{1}(\{5,7\})=\{5,7\}, \mathrm{k}_{1}(\{5,6\})=\mathrm{k}_{1}(\{6,7\})=\mathrm{k}_{1}(\{\mathrm{M}\})=$ $M, k_{1}(\varphi)=\varphi$. Define a closure operator k_{2} on M by $\mathrm{k}_{2}(\{5\})=\{5\}, \mathrm{k}_{2}(\{6\})=\mathrm{k}_{2}(\{7\})=\mathrm{k}_{2}(\{6$, $7\})=\{6,7\}, \mathrm{k}_{2}(\{5,6\})=\mathrm{k}_{2}(\{5,7\})=\mathrm{k}_{2}(\{\mathrm{M}\})=\mathrm{M}, \mathrm{k}_{2}(\varphi)=\varphi$. Now, $\left(\mathrm{M}, \mathrm{k}_{1}, \mathrm{k}_{2}\right)$ is a bi- ${ }^{`}$ Cech closure space.

Definition: 2.2 [5] A subset C in a bi- ${ }^{`}$ Cech closure space ($\mathrm{M}, \mathrm{k}_{1}, \mathrm{k}_{2}$) is said to be

1. k_{i}-semi open if $\mathrm{C} \subseteq \mathrm{k}_{\mathrm{i}}\left(\right.$ int $\left.\mathrm{k}_{\mathrm{i}}(\mathrm{C})\right), \mathrm{i}=1,2$
2. k_{i}-semi closed if int $\mathrm{k}_{\mathrm{i}}\left(\mathrm{k}_{\mathrm{i}}(\mathrm{C})\right) \subseteq \mathrm{C}, \mathrm{i}=1,2$

The intersection of all ki - semi - closed subsets of M containing C is called the ki - semi - closure of C and is denoted by $\mathrm{k}-\mathrm{scl}_{\mathrm{i}}(\mathrm{C})$

Definition: 2.3 [5] A subset C in bi - ${ }^{`}$ Cech closure space ($\mathrm{M}, \mathrm{k}_{1}, \mathrm{k}_{2}$) is said to be a $\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right)$ generalized semi closed set if $\mathrm{k}-\mathrm{scl}_{2}(\mathrm{C}) \subseteq \mathrm{G}$ whenever $\mathrm{C} \subseteq \mathrm{G}$ and G is $\mathrm{k}_{1}-$ open in (M, τ).

3. $\left(\mathbf{k}_{1}, \mathbf{k}_{\mathbf{2}}\right)$-\$ closed sets

Definition: 3.1 A subset C in bi - ${ }^{`}$ Cech closure space (M, k_{1}, k_{2}) is said to be a (k_{1}, k_{2})-\$ closed if $\quad \mathrm{k}-\mathrm{scl}_{2}(\mathrm{C}) \subseteq \mathrm{G}$ whenever $\mathrm{C} \subseteq \mathrm{G}$ and G is k_{1-} gs open set in M .

Theorem: 3.1 If C and D are $\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right)-\$$ closed sets and so is a CUD.

Proof: Let C and D be the $\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right) \$$-closed sets. Let G be a k_{1} gs-open set in M. Let $(\mathrm{CUD}) \subseteq \mathrm{G}$. Then $\mathrm{C} \subseteq \mathrm{G}$ and $\mathrm{D} \subseteq \mathrm{G}$. Then $\mathrm{k}-\mathrm{scl}_{2}(\mathrm{C}) \subseteq \mathrm{G}$ and $\mathrm{k}-\mathrm{scl}_{2}(\mathrm{D}) \subseteq \mathrm{G} \operatorname{Implies}\left(\mathrm{k}-\mathrm{cl}_{2}(\mathrm{C}) \mathrm{U}\right.$ $\left.\mathrm{k}-\mathrm{scl}_{2}(\mathrm{D})\right) \subseteq \mathrm{G}$. Hence $\mathrm{k}-\mathrm{scl}_{2}(\mathrm{CUD}) \subseteq \mathrm{G}$. Thus CUD is a $\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right)-\$$ closed set.

Theorem: 3.2 If C is a $\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right)$ - $\$$ closed set. Then $\mathrm{k}-\mathrm{scl}_{2}(\mathrm{C})$ - C contains no non-empty
k_{1}-gs closed sets.

Proof: Let C be $\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right)-\$$ closed. Let G be $\mathrm{k}_{1}-\mathrm{gs}$ closed contained in $\mathrm{k}-\mathrm{scl}_{2}(\mathrm{C})-\mathrm{C}$.
Now, $\mathrm{G} \subseteq \mathrm{k}-\mathrm{scl}_{2}(\mathrm{C})$ and $\mathrm{G} \subseteq \mathrm{C}^{\mathrm{c}}$

Now, $\mathrm{G} \subseteq \mathrm{C}^{\mathrm{c}}$ then $\mathrm{C} \subseteq \mathrm{G}^{\mathrm{c}}$. Since G is $\mathrm{k}_{1}-\mathrm{gs}$ closed, G^{c} is $\mathrm{k}_{1}-\mathrm{gs}$ open. Thus we have, $\mathrm{k}-\mathrm{scl}_{2}(\mathrm{C}) \subseteq \mathrm{G}^{\mathrm{c}}$. Consequently,
\qquad

From (1) and (2), $\mathrm{G} \subseteq \mathrm{k}-\mathrm{scl}_{2}(\mathrm{C}) \cap\left[\mathrm{k}-\mathrm{scl}_{2}(\mathrm{C})\right]^{\mathrm{c}}=\Phi$. Therefore $\mathrm{G}=\Phi$. Hence $\mathrm{k}-\mathrm{scl}_{2}(\mathrm{C})$ - C contains no non-empty k_{1}-gs closed sets.

Theorem: 3.3 If C is a $\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right)$ - $\$$ closed set, then $\mathrm{k}-\operatorname{scl}_{1}(\mathrm{x}) \cap \mathrm{C} \neq \varphi$ holds for each $\mathrm{x} \in \mathrm{k}$ $\operatorname{scl}_{2}(\mathrm{C})$

Proof: Let C be a $\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right)-\$$ closed set. Suppose $\mathrm{k}-\operatorname{scl}_{1}(\mathrm{x}) \cap \mathrm{C}=\varphi$, for some $\mathrm{x} \in \mathrm{k}-\mathrm{scl}_{2}(\mathrm{C})$,

We have $\mathrm{C} \subseteq\left[\mathrm{k}-\operatorname{scl}_{1}(\mathrm{x})\right]^{\mathrm{c}}$. Now $\mathrm{k}-\operatorname{scl}_{1}(\mathrm{x})$ is k_{1}-semi closed. Therefore $\left[\mathrm{k}-\mathrm{scl}_{1}(\mathrm{x})\right]^{\mathrm{c}}$ is k_{1}-semi open. Thus $\left[\mathrm{k}-\mathrm{scl}_{1}(\mathrm{x})\right]^{\mathrm{c}}$ is $\mathrm{k}_{1}-\mathrm{gs}$ open. Since C is a $\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right) \$$-closed set, we have $\mathrm{k}-\mathrm{scl}_{2}(\mathrm{C}) \subseteq[\mathrm{k}$ $\left.\operatorname{scl}_{1}(\mathrm{x})\right]^{\mathrm{c}} \operatorname{Implies}^{\mathrm{k}-\mathrm{scl}_{2}(\mathrm{x}) \cap \mathrm{k}-\mathrm{scl}_{1}(\mathrm{x})=\varphi . \operatorname{Then~} \mathrm{x} \notin \mathrm{k}-\mathrm{scl}_{2}(\mathrm{C}) \text { is a contradiction. Hence } \mathrm{k}-\mathrm{scl}_{2}(\mathrm{x})}$ $\cap \mathrm{C} \neq \varphi$ holds for each $\mathrm{x} \in \mathrm{k}-\mathrm{scl}_{2}(\mathrm{C})$.

Theorem: 3.4 Let $\left(M, k_{1}, k_{2}\right)$ be bi $-{ }^{\sim}$ Cech closure space. For each x in $\mathrm{M},\{\mathrm{x}\}$ is $\mathrm{k}_{1}-\mathrm{gs}$ closed or $\{\mathrm{x}\}^{\mathrm{c}}$ is $\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right)-\$$ closed set.

Proof: Let $\left(M, k_{1}, k_{2}\right)$ be bi-cech closure space. Suppose that $\{x\}$ is not $k_{1}-g s$ closed, $\{x\}^{c}$ is not k_{1}-gs open. Therefore, the only k_{1}-gs open set containing $\{\mathrm{x}\}^{\mathrm{c}}$ is M . Thus $\{\mathrm{x}\}^{\mathrm{c}} \subset \mathrm{M}$. Now, $\mathrm{k}-$ $\operatorname{scl}_{2}\left[\{\mathrm{x}\}^{\mathrm{c}}\right] \subseteq \mathrm{k}^{-\operatorname{scl}_{2}}(\mathrm{x})=\mathrm{M}$. Hence $\{\mathrm{x}\}^{\mathrm{c}}$ is a $\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right)-\$$ closed set.

Theorem: 3.5 Let C be a $\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right)-\$$ closed subset, and if C is $\mathrm{k}_{1}-\mathrm{gs}$ open then $\mathrm{C}=\mathrm{k}-\mathrm{scl}_{2}(\mathrm{C})$.

Proof: Let C be a $\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right)$ - $\$$ closed subset of a bi - ${ }^{-}$Cech closure space $\left(\mathrm{M}, \mathrm{k}_{1}, \mathrm{k}_{2}\right)$ and let C be a k_{1}-gs open set. Then $\mathrm{k}-\mathrm{scl}_{2}(\mathrm{C}) \subseteq \mathrm{G}$, whenever $\mathrm{C} \subseteq \mathrm{G}$ and G is a $\mathrm{k}_{1}-\mathrm{gs}$ open set in M . Since C is k_{1}-gs open and $\mathrm{C} \subseteq \mathrm{C}$, We have $\mathrm{k}-\mathrm{scl}_{2}(\mathrm{C}) \subseteq \mathrm{C}$ but always, $\mathrm{C} \subseteq \mathrm{k}-\mathrm{scl}_{2}(\mathrm{C}) \mathrm{Thus}, \mathrm{C}=\mathrm{k}-\mathrm{scl}_{2}(\mathrm{C})$.

Theorem: 3.6 Let $C \subseteq Y \subseteq M$ and suppose that C is $\left(k_{1}, k_{2}\right)-\$$ closed in $\left(M, k_{1}, k_{2}\right)$. Then C is $\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right)-\$$ closed relative to Y .

Proof: Let S be any $\mathrm{k}_{1}-\mathrm{gs}$ open set in Y such that $\mathrm{C} \subseteq \mathrm{S}$. Then $\mathrm{S}=\mathrm{G} \cap \mathrm{Y}$ for some G is $\mathrm{k}_{1}-\mathrm{gs}$ open in M . Therefore $\mathrm{C} \subset \mathrm{G} \cap \mathrm{Y}$ implies $\mathrm{C} \subseteq \mathrm{G}$. Since C is $\mathrm{a}\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right)-\$$ closed set in M , We have $\mathrm{k}-\mathrm{scl}_{2}(\mathrm{C}) \subseteq \mathrm{C}$. Hence $\mathrm{Y} \cap \mathrm{k}-\operatorname{scl}_{2}(\mathrm{C}) \subseteq \mathrm{Y} \cap \mathrm{G}=\mathrm{S}$. Thus C is a $\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right)-\$$ closed set relative to Y .

\section*{4. ${ }_{\$} \mathrm{C}_{0}$ bi- ${ }^{`}$ Cech spaces and ${ }_{\$} \mathrm{C}_{1}$ bi- ${ }^{`}$ Cech spaces}

Definition 4.1

A bi- ${ }^{`}$ Cech closure space $\left(M, k_{1}, \mathrm{k}_{2}\right)$ is said to be a ${ }_{\$} \mathbf{C}_{\mathbf{0}}$ bi- ${ }^{`}$ Cech space if for every $\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right)-\$$ open subset G of $\left(\mathrm{M}, \mathrm{k}_{1}\right), \mathrm{x} \in \mathrm{G}$ implies $\mathrm{k}_{2}(\{\mathrm{x}\}) \subseteq \mathrm{G}$.

Example 4.1

Let $\mathrm{M}=\{5,6,7\}$ and define a closure operator k_{1} on M by $\mathrm{k}_{1}(\{\varphi\})=\varphi, \mathrm{k}_{1}(\{5\})=\{5\}$,
$\mathrm{k}_{1}(\{6\})=\mathrm{k}_{1}(\{7\})=\mathrm{k}_{1}(\{6,7\})=\{6,7\}$ and $\mathrm{k}_{1}(\{5,6\})=\mathrm{k}_{1}(\{5,7\})=\mathrm{k}_{1}(\mathrm{M})=\mathrm{M}$. Define a closure operator k_{2} on M by $\mathrm{k}_{2}(\{\varphi\})=\varphi, \mathrm{k}_{2}(\{5\})=\{5\}, \mathrm{k}_{2}(\{6\})=\{6,7\}, \mathrm{k}_{2}(\{7\})=\mathrm{k}_{2}(\{5$, $7\})=\{5,7\}$ and $\mathrm{k}_{2}(\{5,6\})=\mathrm{k}_{2}(\{6,7\})=\mathrm{k}_{2}(\mathrm{M})=\mathrm{M}$. Then $\left(\mathrm{M}, \mathrm{k}_{1}, \mathrm{k}_{2}\right)$ is a ${ }_{\$} \mathbf{C}_{\mathbf{0}} \mathrm{bi}^{-}{ }^{`}$ Cech space.

Theorem 4.1

A bi- ${ }^{`}$ Cech space ($\mathrm{M}, \mathrm{k}_{1}, \mathrm{k}_{2}$) is a ${ }_{\$} \mathbf{C}_{\mathbf{0}}$ bi- ${ }^{`}$ Cech space if and only if for every $\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right)$ - $\$$-closed subset H of $\left(\mathrm{M}, \mathrm{k}_{1}\right)$ such that $\mathrm{x} \notin \mathrm{H}, \mathrm{k}_{2}(\{\mathrm{x}\}) \cap \mathrm{H}=\phi$

Proof

Let H be a $\left(k_{1}, k_{2}\right)-\$$-closed subset of $\left(M, k_{1}\right)$ and let $x \notin H$, since $x \in M-H$ and $M-H$ is a $\left(k_{1}, k_{2}\right)-\$$ -open subset of $\left(\mathrm{M}, \mathrm{k}_{1}\right), \mathrm{k}_{2}(\{\mathrm{x}\}) \subseteq \mathrm{M}-\mathrm{H}$. Consequently, $\mathrm{k}_{2}(\{\mathrm{x}\}) \cap \mathrm{H}=\phi$.

Conversely, let G be a $\$$-open subset of $\left(M, k_{1}\right)$ and let $x \in G$.Since $M-U$ is a $\$$-closed subset of $\left(M, k_{1}\right)$, and $x \notin M-G, k_{2}(\{x\}) \cap(M-G)=\phi$. Consequently $k_{2}(\{M\}) \subseteq U$. Hence $\left(M, k_{1}, k_{2}\right)$ is $\quad{ }_{\$} \mathbf{C}_{\mathbf{0}}$ bi - ${ }^{-}$Cech space.

Definition 4.2

A bi - ${ }^{-}$Cech closure space $\left(M, k_{1}, k_{2}\right)$ is said ${ }_{\$} \mathbf{C}_{\mathbf{1}}$ bi - ${ }^{-}$Cech space if for each $\mathrm{x}, \mathrm{y} \in \mathrm{M}$ such that $\mathrm{k}_{1}(\{\mathrm{x}\}) \neq \mathrm{k}_{2}(\{\mathrm{y}\})$,there exist disjoint $\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right)-\$$-open subset G of $\left(\mathrm{M}, \mathrm{k}_{2}\right)$ and $\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right)$-\$ -open subset H of $\left(M, k_{1}\right)$ such that $k_{1}(\{x\}) \subseteq G$ and $k_{2}(\{y\}) \subseteq H$.

Example 4.2

Let $\mathrm{M}=\{5,6\}$ and define a closure operator k_{1} on M by $\mathrm{k}_{1}(\{\varphi\})=\varphi$ and $\mathrm{k}_{1}(\{5\})=\mathrm{k}_{1}(\mathrm{M})=\mathrm{M}$. Define a closure operator k_{2} on M by $k_{2}(\{\varphi\})=\varphi$ and $k_{2}(\{6\})=k_{2}(M)=M$. Then $\left(M, k_{1}, k_{2}\right)$ is a ${ }_{\$} \mathbf{C}_{\mathbf{1}}$ bi- $^{`}$ Cech space.

Theorem 4.2

Every ${ }_{\$} \mathbf{C}_{\mathbf{1}}$ bi ${ }^{`}$ Cech space is a ${ }_{\$} \mathbf{C}_{\mathbf{0}}$ bi ${ }^{-}$Cech space

Proof

Let $\left(M, k_{1}, k_{2}\right)$ be a ${ }_{\$} \mathbf{C}_{1}$ bi ${ }^{`}$ Cech space .Let G be $a\left(k_{1}, k_{2}\right)$ - $\$$-open subset of $\left(M, k_{1}\right)$ and let $x \in G$. If $\mathrm{y} \notin \mathrm{G}$, then $\mathrm{k}_{2}(\{\mathrm{x}\}) \neq \mathrm{k}_{1}(\{y\})$ because $\mathrm{x} \notin \mathrm{k}_{1}(\{\mathrm{y}\})$.Then there exist $\mathrm{a}\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right)$ - $\$$-open subset H_{y} of $\left(M, k_{2}\right)$ such that $k_{1}(\{y\}) \subseteq H_{y}$ and $x \notin V_{y}$, which implies $y \notin k_{2}(\{x\})$.Consequently $\mathrm{k}_{2}(\{\mathrm{y}\}) \subseteq \mathrm{G}$. Hence $\left(\mathrm{M}, \mathrm{k}_{1}, \mathrm{k}_{2}\right)$ is a ${ }_{\$} \mathbf{C}_{\mathbf{0}}$ bi ${ }^{`}$ Cech space.

The converse need not be true as seen from the following example

Example 4.3

Let $\mathrm{M}=\{5,6\}$ and define a closure operator k_{1} on M by $\mathrm{k}_{1}(\{\varphi\})=\varphi$ and $\mathrm{k}_{1}(\{5\})=\mathrm{k}_{1}(\mathrm{M})=\mathrm{M}$. Define a closure operator k_{2} on M by $\mathrm{k}_{2}(\{\varphi\})=\varphi, \mathrm{k}_{2}(\{5\})=\{5\}$ and $\mathrm{k}_{2}(\{b\})=\mathrm{k}_{2}(\mathrm{M})=\mathrm{M}$. Then ($M, k_{1} k_{2}$,) is a ${ }_{\$} \mathbf{C}_{\mathbf{0}}$ bi- ${ }^{`}$ Cech space but it is not a ${ }_{\$} \mathbf{C}_{\mathbf{1}}$ bi- ${ }^{`}$ Cech space.

Theorem 4.3

A bi ${ }^{`}$ Cech closure space $\left(\mathrm{M}, \mathrm{k}_{1}, \mathrm{k}_{2}\right)$ is a ${ }_{\$} \mathbf{C}_{\mathbf{1}}$ bi ${ }^{`}$ Cech space if and only if for every pair of points x , y of $\left(\mathrm{M}, \mathrm{k}_{1}, \mathrm{k}_{2}\right)$ such that $\mathrm{k}_{1}(\{\mathrm{x}\}) \neq \mathrm{k}_{2}(\{\mathrm{y}\})$ there exists a $\$$-open subset G of $\left(\mathrm{M}, \mathrm{k}_{2}\right)$ and $\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right)$ - $\$$-open subset H of $\left(\mathrm{M}, \mathrm{k}_{2}\right)$ such that $\mathrm{x} \subseteq \mathrm{H}, \mathrm{y} \subseteq \mathrm{G}$ and $\mathrm{H} \cap \mathrm{G}=\phi$

Proof

Suppose that $\left(\mathrm{M}, \mathrm{k}_{1}, \mathrm{k}_{2}\right)$ is a ${ }_{\$} \mathbf{C}_{\mathbf{1}}$ bi ${ }^{`}$ Cech space. Let x, y be points of $\left(\mathrm{M}, \mathrm{k}_{1}, \mathrm{k}_{2}\right)$ such that $\mathrm{k}_{1}(\{\mathrm{x}\}) \neq \mathrm{k}_{2}(\{\mathrm{y}\})$.There exists a $\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right)$ - $\$$-open subset G of $\left(\mathrm{M}, \mathrm{k}_{1}\right)$ and $\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right)$ - $\$$-open subset H of $\left(M, k_{2}\right)$ such that $x \in k_{1}(\{x\}) \subseteq H$ and $y \in k_{2}(\{y\}) \subseteq G$.

Conversely, suppose that there exist a $\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right)$ - $\$$-open subset G of $\left(\mathrm{M}, \mathrm{k}_{1}\right)$ and open subset H of $\left(\mathrm{M}, \mathrm{k}_{2}\right)$ such that $\mathrm{x} \subseteq \mathrm{H}$ and $\mathrm{y} \subseteq \mathrm{G}$ and $\mathrm{G} \cap \mathrm{H}=\phi$. Since every ${ }_{\$} \mathbf{C}_{\mathbf{1}}$ bi - ${ }^{-}$Cech space is ${ }_{\$} \mathbf{C}_{\mathbf{0}}$ bi-Cech space, $\mathrm{k}_{1}(\{\mathrm{x}\}) \subseteq \mathrm{H}$ and $\mathrm{k}_{2}(\{\mathrm{y}\}) \subseteq \mathrm{G}$.

Theorem 4.4

Let $\left\{\left(M, k_{i}{ }^{1}, k_{i}{ }^{2}\right): i \in I\right\}$ be a family of $\mathrm{bi}-^{\sim}$ Cech closure spaces. If $\prod_{i \in I}\left(M, k_{i}{ }^{1}, k_{i}{ }^{2}\right)$ is an ${ }_{\$} \mathbf{C}_{\mathbf{0}} \mathrm{bi}^{\wedge}$ Cech space, then $\left(M, k_{i}{ }^{1}, k_{i}^{2}\right)$ is an ${ }_{\$} \mathbf{C}_{\mathbf{0}}$ bi ${ }^{`}$ Cech space for each $i \in I$.

Proof

Suppose that $\prod_{i \in I}\left(\mathrm{M}, \mathrm{k}_{\mathrm{i}}{ }^{1}, \mathrm{k}_{\mathrm{i}}{ }^{2}\right)$ is an ${ }_{\$} \mathbf{C}_{\mathbf{0}}$ bi ${ }^{`}$ Cech space. Let $\mathrm{j} \in \mathrm{I}$ and let G be an $\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right)$ - $\$$-open subset of $\left(\mathrm{M}_{\mathrm{j}}, \mathrm{k}_{\mathrm{j}}{ }^{1}\right)$ such that $\mathrm{x}_{\mathrm{j}} \in \mathrm{G}$. Then $\mathrm{G} \times \prod_{\substack{i \neq j \\ i \in i}} \mathrm{M}_{\mathrm{i}}$ is an $\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right)-\$$-open subset of $\prod_{i \in I}\left(\mathrm{M}, \mathrm{k}_{\mathrm{i}}{ }^{1}\right)$ such
 $\subseteq \mathrm{G} \times \prod_{\substack{i \neq j \\ i \in i}} \mathrm{M}_{\mathrm{i}}$. Consequently, $\mathrm{k}_{\mathrm{j}}{ }^{2}\left\{\mathrm{x}_{\mathrm{j}}\right\} \subseteq \mathrm{G}$. Hence $\left(\mathrm{M}, \mathrm{k}_{\mathrm{i}}{ }^{1},_{\mathrm{i}}{ }^{2}\right)$ is an ${ }_{\$} \mathrm{C}_{\mathbf{0}}$ bi ${ }^{`}$ Cech space.

Theorem 4.5

Let $\left\{\left(M, k_{i}{ }^{1}, k_{i}{ }^{2}\right): i \in I\right\}$ be a family of $\mathrm{bi}{ }^{`}$ Cech closure spaces. If $\left(M, k_{i}{ }^{1}, k_{i}{ }^{2}\right)$ is a ${ }_{\$} \mathbf{C}_{\mathbf{1}}$ bi ${ }^{\sim}$ Cech space for each $\mathrm{i} \in \mathrm{I}$, then $\prod_{i \in I}\left(\mathrm{M}, \mathrm{k}_{\mathrm{i}}{ }^{1}, \mathrm{k}_{\mathrm{i}}{ }^{2}\right)$ is an ${ }_{\$} \mathbf{C}_{\mathbf{1}}$ bi ${ }^{`}$ Cech space.

Proof

Suppose that $\left(M, k_{i}{ }^{1}, k_{i}{ }^{2}\right) \quad$ is an ${ }_{\$} \mathbf{C}_{\mathbf{i}}$ bi $-{ }^{-}$Cech space for each $i \in I$. Let $\left(x_{i}\right)_{i \in I}$ and $\left.\left(y_{i}\right)\right)_{i \in I}$ be points of $\prod_{i \in I}\left(\mathrm{M}_{\mathrm{i}}\right) \quad$ such that $\prod_{i \in I} \mathrm{k}_{\mathrm{i}}{ }^{2} \prod_{i \in I}\left(\left\{\left(\mathrm{x}_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{I}}\right\}\right) \neq \prod_{i \in I} \mathrm{k}_{\mathrm{i}}{ }^{2} \prod_{i \in I}\left(\left\{\left(\mathrm{y}_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{I}}\right\}\right)$. There exists $\mathrm{j} \in \mathrm{I}$ such that $\mathrm{k}_{\mathrm{j}}{ }^{1}\left\{\mathrm{x}_{\mathrm{j}}\right\} \neq \mathrm{k}_{\mathrm{j}}{ }^{2}\left\{\mathrm{y}_{\mathrm{j}}\right\}$.Since $\left(\mathrm{M}, \mathrm{kj}^{1}, \mathrm{k}_{\mathrm{j}}{ }^{2}\right) \quad$ is a ${ }_{\$} \mathbf{C}_{1}$ bi ${ }^{{ }^{~}}$ Cech space, there exists an $\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right)$ - $\$$-open subset G of $\left(M_{j}, k_{j}^{1}\right)$ and an $\left(k_{1}, k_{2}\right)$ - $\$$-open subset H of $\left(M_{j}, \mathrm{k}_{\mathrm{j}}{ }^{2}\right)$ such that $G \cap H=\phi, \mathrm{k}_{\mathrm{j}}^{1}\left\{\mathrm{y}_{\mathrm{j}}\right\} \subseteq \mathrm{G}$ and $\mathrm{k}_{\mathrm{j}}^{1}\left\{\mathrm{x}_{\mathrm{j}}\right\} \subseteq \mathrm{H}$. Consequently $\prod_{i \in I} \mathrm{k}_{\mathrm{i}}^{2} \prod_{i \in I}\left(\left\{\left(\mathrm{y}_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{I}}\right\}\right) \subseteq \mathrm{G} \times \prod_{\substack{i \neq j \\ i \in i}} \mathrm{M}_{\mathrm{i}}$ and

$$
\prod_{i \in I} \mathrm{k}_{\mathrm{i}}^{1} \prod_{i \in I}\left(\left\{\left(\mathrm{x}_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{I}}\right\}\right) \subseteq \mathrm{H} \times \prod_{\substack{i \neq j \\ i \in i}} \mathrm{M}_{\mathrm{i}} \text { such that } \mathrm{G} \times \prod_{\substack{i \neq j \\ i \in i}} \mathrm{M}_{\mathrm{i}} \text { is an } \$ \text {-open subset of } \prod_{i \in I}\left(\mathrm{M}_{\mathrm{i}}, \mathrm{k}_{\mathrm{i}}{ }^{1}\right) \text {, }
$$ $\mathrm{H} \times \prod_{\substack{i \neq j \\ i \in i}} \mathrm{M}_{\mathrm{i}}$ is an $\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right)-\$$-open subset of $\prod_{i \in I}\left(\mathrm{M}_{\mathrm{i}}, \mathrm{k}_{\mathrm{i}}{ }^{2}\right) \quad$ and $\left(\mathrm{G} \times \prod_{\substack{i \neq j \\ i \in i}} \mathrm{M}_{\mathrm{i}}\right) \cap\left(\mathrm{H} \times \prod_{\substack{i \neq j \\ i \in i}} \mathrm{M}_{\mathrm{i}}\right)=\phi$. Hence $\prod_{i \in I}\left(\mathrm{M}_{\mathrm{i}}, \mathrm{k}_{\mathrm{i}}{ }^{1}, \mathrm{k}_{\mathrm{i}}{ }^{2}\right)$ is an ${ }_{\$} \mathbf{C}_{\mathbf{1}} \mathrm{bi}-{ }^{`}$ Cech space.

References:

[1]. Arya .S.P and Nour.T.M, Characterizations of s-normal spaces, Indian J.Pure. Appl. Math., 21(8) (1990), 717-719.
[2]. Boonpok.C C C_{0}-bi-Cech spaces and C_{1}-bi-Cech spaces. Acta Math. Acad.
Paedagog. Nyhazi. (N. Si), (2009), 25(2): 277-281.
[3] Cech.E, Topological Spaces, Inter Science Publishers, John Wiley and Sons, New York (1966).
[4] Chandrasekhara Rao.K and Gowri.:R, On biclosure spaces, Bulletine of pure and applied sciences, 25E (2006), 171-175.
[5] Chandrasekhara Rao.K and Gowri.R, Regular generalised closed sets in biclosure spaces, Jr. of institute of mathematics and computer science, (Math. Ser.), 19(3) (2006), 283-286.
[6] Chvalina.J, On homeomorphic topologies and equivalent set-systems Arch. Math. (Brno), 12(2) (1976), 107-115
[7] Chvalina.J, Stackbases in power sets of neighbourhood spaces preserving the continuity of mappings, Arch. Math. (Brno), 17(2) (1981), 81-86.
[8] Day M.M, Convergence, closure and neighbourhoods, Duke Math. J. (1944), H:181-199.
[9]Gnilka.S, On extended topologies I; Closure operators, Ann.
Soc. Math. Pol. Ser. I, Commentat, Math., 34: 81-94, 1994
[10] HammerP.C., Extended topology; continuity I, Portug Math., 25 (1964), 77-93.
[11] Hausdorff.F, Gestafte Raume Fund., Math., 25 (1935), 486-502
[12] L. Skula, System von stetigen Abbildungen, Czechoslovak Math. J, 17(92) (1967), 45-52.
[13] J. Slapal, Closure operations for digital topology, Theoret. Comput. Sci, 305(1-3) (2003), 457-471.
[14] M. Vigneshwaran, R. Devi. On $\mathrm{G} \alpha \mathrm{O}-\mathrm{kernel}$ in the digital plane. International Journal of Mathematical Archive, (2012), 3(6): 2358-2373.

