

On \$-Closed Sets in Bi-[~]*C***ech Closure Spaces**

Saranya.S^a, Ramya.N^b,

a - Department of Mathematics, CMR University, Bangalore, India.

Email: saranya.subbaiyan@gmail.com

b - Department of Mathematics. Sri Shakthi Institute of Engineering & Technology. Coimbatore, Tamil Nadu, India. Email: <u>ramyanagaraj144@gmail.com</u>

Abstract

In this article, the idea of a \$-closed set in a bi - \tilde{C} Cech closure space is introduced, and some characterizations and features are examined. Additionally, the idea of C_0 bi \tilde{C} cech spaces and C_1 bi-C cech spaces are introduced, and their fundamental features are researched.

Mathematics Subject Classification: 54A05, 54D10, 54F65, 54G05.

Keywords: bi- ' Cech closure operator, bi- ' Cech closure spaces, bi- ' Cech-\$ closed sets

1. Introduction

Cech closure spaces were introduced by 'Cech [3]. Numerous authors have since researched them [2,4,5,6,7,8,11,12,13,14]. In Cech's method, the operator satisfies the Kuratowski axiom idempotent requirement. This requirement does not have to be true for each set C of M. The operator becomes a topological closure operator when both of these conditions are satisfied. So, a topological space is a generalization of the idea of closure space. The idea of a gs-closed set was developed by Arya [1] et al. to examine various topological features. Hammer deserves credit for a proper description of closure functions; see, for instance, [10] and Gnilka [8]. The idea of bi -' Cech -\$ closed sets and some of its attributes are covered in this research.

2. Preliminaries

Definition: 2.1. [4] Two functions k_1 and k_2 from power set M to itself are called bi-'Cech closure operators (simply bi-closure operators) for M if they satisfy the following properties.

(i) $k_1(\phi) = \phi$ and $k_2(\phi) = \phi$

(ii) $C \subset k_1(C)$ and $C \subset k_2(C)$ for any set $C \subseteq M$

(iii) $k_1(C \cup D) = k_1(C) \cup k_1(D)$ and $k_2(C \cup D) = k_2(C) \cup k_2(D)$ for any $C, D \subseteq M$

(M, k_1 , k_2) is called bi- $\dot{}$ Cech closure space.

Example:2.1. Let $M = \{5, 6, 7\}$ and define a closure operator k_1 on M by

 $k_1(\{5\}) = \{5\}, k_1(\{6\}) = \{6, 7\}, k_1(\{7\}) = k_1(\{5, 7\}) = \{5, 7\}, k_1(\{5, 6\}) = k_1(\{6, 7\}) = k_1(\{M\}) = M, k_1(\phi) = \phi$. Define a closure operator k_2 on M by $k_2(\{5\}) = \{5\}, k_2(\{6\}) = k_2(\{7\}) = k_2(\{6, 7\}) = \{6, 7\}, k_2(\{5, 6\}) = k_2(\{5, 7\}) = k_2(\{M\}) = M, k_2(\phi) = \phi$. Now, (M, k_1, k_2) is a bi- ` Cech closure space.

Definition: 2.2 [5] A subset C in a bi- $\check{}$ Cech closure space (M, k_1 , k_2) is said to be

1. k_i-semi open if $C \subseteq k_i(\text{int } k_i(C)), i = 1, 2$

2. k_i-semi closed if int $k_i(k_i(C)) \subseteq C$, i = 1, 2

The intersection of all ki - semi - closed subsets of M containing C is called the ki - semi

- closure of C and is denoted by $k-scl_i(C)$

Definition: 2.3 [5] A subset C in bi - Cech closure space (M, k_1 , k_2) is said to be a (k_1 , k_2)generalized semi closed set if k-scl₂(C) \subseteq G whenever C \subseteq G and G is k_1 -open in (M, τ).

3. (k₁, k₂) -\$ closed sets

Definition: 3.1 A subset C in bi - Cech closure space (M, k_1, k_2) is said to be a (k_1, k_2) -\$ closed if k-scl₂(C) \subseteq G whenever C \subseteq G and G is k_1 -gs open set in M.

Theorem: 3.1 If C and D are (k_1, k_2) -\$ closed sets and so is a CUD.

Proof: Let C and D be the (k_1, k_2) \$-closed sets. Let G be a k_1 gs-open set in M. Let $(C\cup D) \subseteq G$. Then $C \subseteq G$ and $D \subseteq G$. Then $k-scl_2(C) \subseteq G$ and $k-scl_2(D) \subseteq G$. Implies $(k-cl_2(C) \cup k-scl_2(D)) \subseteq G$. Hence $k-scl_2(C\cup D) \subseteq G$. Thus $C\cup D$ is a (k_1, k_2) -\$ closed set.

Theorem: 3.2 If C is a (k_1, k_2) -\$ closed set. Then k-scl₂(C)-C contains no non-empty

k₁-gs closed sets.

Proof: Let C be (k_1, k_2) -\$ closed. Let G be k_1 -gs closed contained in k-scl₂(C)-C.

Now, $G \subseteq k \operatorname{-scl}_2(C)$ and $G \subseteq C^c$ (1)

Now, $G \subseteq C^c$ then $C \subseteq G^c$. Since G is k_1 -gs closed, G^c is k_1 -gs open. Thus we have,

 $k-scl_2(C) \subseteq G^c$.Consequently,

 $G \subseteq [k-scl_2(C)]^c \quad \longrightarrow \quad (2)$

From (1) and (2), $G \subseteq k-scl_2(C) \cap [k-scl_2(C)]^c = \Phi$. Therefore $G = \Phi$. Hence $k-scl_2(C)-C$ contains no non-empty k_1 -gs closed sets.

Theorem: 3.3 If C is a (k_1, k_2) -\$ closed set, then $k\operatorname{-scl}_1(x) \cap C \neq \phi$ holds for each $x \in k\operatorname{-scl}_2(C)$

Proof: Let C be a (k_1, k_2) -\$ closed set. Suppose k-scl₁(x) \cap C= φ , for some x \in k-scl₂(C),

We have $C \subseteq [k-scl_1(x)]^c$. Now $k-scl_1(x)$ is k_1 -semi closed. Therefore $[k-scl_1(x)]^c$ is k_1 -semi open. Thus $[k-scl_1(x)]^c$ is k_1 -gs open. Since C is a (k_1, k_2) \$-closed set, we have $k-scl_2(C) \subseteq [k-scl_1(x)]^c$ Implies $k-scl_2(x) \cap k-scl_1(x) = \phi$. Then $x \notin k-scl_2(C)$ is a contradiction. Hence $k-scl_2(x) \cap C \neq \phi$ holds for each $x \in k-scl_2(C)$.

Theorem: 3.4 Let (M, k_1, k_2) be bi - Cech closure space. For each x in M, $\{x\}$ is k_1 -gs closed or $\{x\}^c$ is (k_1, k_2) - closed set.

Proof: Let (M, k_1, k_2) be bi-cech closure space. Suppose that $\{x\}$ is not k_1 -gs closed, $\{x\}^c$ is not k_1 -gs open. Therefore, the only k_1 -gs open set containing $\{x\}^c$ is M. Thus $\{x\}^c \subseteq M$. Now, k-scl₂[$\{x\}^c$] $\subseteq k$ -scl₂(x)=M. Hence $\{x\}^c$ is a (k_1, k_2) -\$ closed set.

Theorem: 3.5 Let C be a (k_1, k_2) -\$ closed subset, and if C is k_1 -gs open then C= k-scl₂(C).

Proof: Let C be a (k_1, k_2) -\$ closed subset of a bi - Cech closure space (M, k_1, k_2) and let C be a k_1 -gs open set. Then k-scl₂(C) \subseteq G, whenever C \subseteq G and G is a k_1 -gs open set in M. Since C is k_1 -gs open and C \subseteq C, We have k-scl₂(C) \subseteq C but always, C \subseteq k-scl₂(C)Thus, C= k-scl₂(C).

Theorem: 3.6 Let $C \subseteq Y \subseteq M$ and suppose that C is (k_1, k_2) -\$ closed in (M, k_1, k_2) . Then C is (k_1, k_2) -\$ closed relative to Y.

Proof: Let S be any k_1 -gs open set in Y such that $C \subseteq S$. Then $S=G \cap Y$ for some G is k_1 -gs open in M. Therefore $C \subseteq G \cap Y$ implies $C \subseteq G$. Since C is a (k_1, k_2) -\$ closed set in M, We have k-scl₂(C) \subseteq C. Hence $Y \cap k$ -scl₂(C) \subseteq Y \cap G =S. Thus C is a (k_1, k_2) -\$ closed set relative to Y.

4. $C_0 bi$ - Cech spaces and $C_1 bi$ - Cech spaces

Definition 4.1

A bi- Cech closure space (M,k_1,k_2) is said to be a C_0 bi- Cech space if for every (k_1, k_2) -sopen subset G of $(M,k_1), x \in G$ implies $k_2(\{x\}) \subseteq G$.

Example 4.1

Let M = {5, 6, 7} and define a closure operator k_1 on M by $k_1 (\{\phi\}) = \phi$, $k_1 (\{5\}) = \{5\}$,

 $k_1 (\{6\}) = k_1 (\{7\}) = k_1 (\{6, 7\}) = \{6, 7\}$ and $k_1 (\{5, 6\}) = k_1 (\{5, 7\}) = k_1 (M) = M$. Define a closure operator k_2 on M by $k_2 (\{\phi\}) = \phi$, $k_2 (\{5\}) = \{5\}$, $k_2 (\{6\}) = \{6, 7\}$, $k_2 (\{7\}) = k_2 (\{5, 7\}) = \{5, 7\}$ and $k_2 (\{5, 6\}) = k_2 (\{6, 7\}) = k_2 (M) = M$. Then (M, k_1, k_2) is a C_0 bi- Cech space.

Theorem 4.1

A bi- Cech space (M,k_1,k_2) is a ${}_{\$}C_0$ bi- Cech space if and only if for every (k_1, k_2) -\$-closed subset H of (M,k_1) such that $x \notin H$, $k_2(\{x\}) \cap H = \phi$

Proof

Let H be a (k_1, k_2) -\$ -closed subset of (M, k_1) and let $x \notin H$, since $x \in M$ -H and M-H is a (k_1, k_2) -\$ -open subset of (M, k_1) , $k_2(\{x\}) \subseteq M$ -H. Consequently, $k_2(\{x\}) \cap H = \phi$.

Conversely, let G be a \$-open subset of (M,k_1) and let $x \in G$.Since M-U is a \$-closed subset of (M,k_1) , and $x \notin M$ -G, $k_2(\{x\}) \cap (M$ -G)= ϕ . Consequently $k_2(\{M\}) \subseteq U$. Hence (M,k_1,k_2) is $\$ Consequently bi - Cech space.

Definition 4.2

A bi - Cech closure space (M,k_1,k_2) is said C_1 bi - Cech space if for each x, $y \in M$ such that $k_1(\{x\}) \neq k_2(\{y\})$, there exist disjoint (k_1, k_2) - $open subset G of <math>(M,k_2)$ and (k_1, k_2) - $open subset H of <math>(M, k_1)$ such that $k_1(\{x\}) \subseteq G$ and $k_2(\{y\}) \subseteq H$.

Example 4.2

Let $M = \{5, 6\}$ and define a closure operator k_1 on M by $k_1 (\{\phi\}) = \phi$ and $k_1 (\{5\}) = k_1 (M) = M$. Define a closure operator k_2 on M by $k_2 (\{\phi\}) = \phi$ and $k_2 (\{6\}) = k_2 (M) = M$. Then (M, k_1, k_2) is a C_1 bi- Cech space.

Theorem 4.2

Every C_1 bi \dot{C} Cech space is a C_0 bi \dot{C} Cech space

Proof

Let (M,k_1,k_2) be a $\$ C₁ bi $\$ Cech space .Let G be a (k_1, k_2) - $\$ -open subset of (M,k_1) and let $x \in G$. If $y \notin G$, then $k_2(\{x\}) \neq k_1(\{y\})$ because $x \notin k_1(\{y\})$.Then there exist a (k_1, k_2) - $\$ -open subset H_y of (M,k_2) such that $k_1(\{y\}) \subseteq H_y$ and $x \notin V_y$, which implies $y \notin k_2(\{x\})$.Consequently $k_2(\{y\}) \subseteq G$. Hence (M,k_1,k_2) is a $\$ C₀ bi $\$ Cech space.

The converse need not be true as seen from the following example

Example 4.3

Let $M = \{5, 6\}$ and define a closure operator k_1 on M by $k_1 (\{\phi\}) = \phi$ and $k_1 (\{5\}) = k_1 (M) = M$. Define a closure operator k_2 on M by $k_2 (\{\phi\}) = \phi$, $k_2 (\{5\}) = \{5\}$ and $k_2 (\{b\}) = k_2 (M) = M$. Then (M, $k_1 k_2$,) is a C_0 bi- Cech space but it is not a C_1 bi- Cech space.

Theorem 4.3

A bi $\check{}$ Cech closure space (M,k_1,k_2) is a ${}_{\$}C_1$ bi $\check{}$ Cech space if and only if for every pair of points x, y of (M,k_1,k_2) such that $k_1({x}) \neq k_2({y})$ there exists a \$-open subset G of (M,k_2) and (k_1, k_2) -\$ -open subset H of (M,k_2) such that $x \subseteq H$, $y \subseteq G$ and $H \cap G = \phi$

Proof

Suppose that (M,k_1,k_2) is a ${}_{\$}C_1$ bi $\check{}$ Cech space. Let x,y be points of (M,k_1,k_2) such that $k_1(\{x\}) \neq k_2(\{y\})$. There exists a (k_1, k_2) -\$-open subset G of (M,k_1) and (k_1, k_2) -\$-open subset H of (M,k_2) such that $x \in k_1(\{x\}) \subseteq H$ and $y \in k_2(\{y\}) \subseteq G$.

Conversely, suppose that there exist a (k_1, k_2) -\$-open subset G of (M, k_1) and open subset H of (M, k_2) such that $x \subseteq H$ and $y \subseteq G$ and $G \cap H = \phi$. Since every ${}_{\$}C_1$ bi - Cech space is ${}_{\$}C_0$ bi-Cech space, $k_1(\{x\}) \subseteq H$ and $k_2(\{y\}) \subseteq G$.

Theorem 4.4

Let { (M,k_i^1,k_i^2) : $i \in I$ } be a family of bi - Cech closure spaces. If $\prod_{i \in I} (M,k_i^1,k_i^2)$ is an ${}_{\$}C_0$ bi Cech space, then (M,k_i^1,k_i^2) is an ${}_{\$}C_0$ bi Cech space for each $i \in I$.

Proof

Suppose that $\prod_{i \in I} (M, k_i^{-1}, k_i^{-2})$ is an C_0 bi C_0 bi C_0 bi C_0 space. Let $j \in I$ and let G be an (k_1, k_2) --0 open subset of (M_j, k_j^{-1}) such that $x_j \in G$. Then $G \times \prod_{\substack{i \neq j \\ i \in i}} M_i$ is an (k_1, k_2) --0 open subset of $\prod_{i \in I} (M, k_i^{-1})$ such that $(M_i)_{i \in I} \in G \times \prod_{\substack{i \neq j \\ i \in i}} M_i$. Since $\prod_{i \in I} (M, k_i^{-1}, k_i^{-2})$ is an C_0 bi C_0 bi (C_0, k_i^{-1}) is an C_0 bi (C_0, k_i^{-1}) bi (C_0, k_i^{-1}) is an C_0 bi (C_0, k_i^{-1}) bi (C_0, k_i^{-1}) bi $(C_0, k_i^$

Theorem 4.5

Let $\{(M, k_i^{1}, k_i^{2}) : i \in I\}$ be a family of bi $\check{}$ Cech closure spaces. If (M, k_i^{1}, k_i^{2}) is a C_1 bi $\check{}$ Cech space for each $i \in I$, then $\prod_{i \in I} (M, k_i^{1}, k_i^{2})$ is an C_1 bi $\check{}$ Cech space.

Proof

Suppose that (M,k_i^{-1},k_i^{-2}) is an ${}_{\$}C_1$ bi - Cech space for each $i \in I$. Let $(x_i)_{i \in I}$ and $(y_i)_{i \in I}$ be points of $\prod_{i \in I} (M_i)$ such that $\prod_{i \in I} k_i^2 \prod_{i \in I} (\{(x_i)_{i \in I}\}) \neq \prod_{i \in I} k_i^2 \prod_{i \in I} (\{(y_i)_{i \in I}\})$. There exists $j \in I$ such that $k_j^{-1}\{x_j\} \neq k_j^{-2}\{y_j\}$. Since (M,k_j^{-1},k_j^{-2}) is a ${}_{\$}C_1$ bi Cech space, there exists an (k_1, k_2) -\$ -open subset G of (M_j,k_j^{-1}) and an (k_1, k_2) -\$ -open subset H of (M_j,k_j^{-2}) such that $G \cap H = \phi, k_j^{-1}\{y_j\} \subseteq G$ and $k_j^{-1}\{x_j\} \subseteq H$. Consequently $\prod_{i \in I} k_i^2 \prod_{i \in I} (\{(y_i)_{i \in I}\}) \subseteq G \times \prod_{i \neq J} M_i$ and

$$\prod_{i \in I} k_i^{-1} \prod_{i \in I} (\{(x_i)_{i \in I}\}) \subseteq H \times \prod_{i \neq j \atop i \in i} M_i \text{ such that } G \times \prod_{i \neq j \atop i \in i} M_i \text{ is an $-open subset of } \prod_{i \in I} (M_i, k_i^{-1}) ,$$

 $H \times \prod_{\substack{i \neq j \\ i \in i}} M_i \text{ is an } (k_1, k_2) \text{-} \$ \text{ -open subset of } \prod_{i \in I} (M_i, k_i^2) \text{ and } (G \times \prod_{\substack{i \neq j \\ i \in i}} M_i) \cap (H \times \prod_{\substack{i \neq j \\ i \in i}} M_i) = \phi \text{. Hence}$

 $\prod_{i \in I} (M_i, k_i^{1}, k_i^{2}) \text{ is an } {}_{\$}C_1 \text{ bi - `Cech space.}$

References:

- Arya .S.P and Nour.T.M, Characterizations of s-normal spaces, Indian J.Pure. Appl. Math., 21(8) (1990), 717-719.
- [2]. Boonpok.C C₀-bi-Cech spaces and C₁-bi-Cech spaces. Acta Math. Acad.
 Paedagog. Nyhazi. (N. Si), (2009), 25(2): 277 281.
- [3] Cech.E, Topological Spaces, Inter Science Publishers, John Wiley and Sons, New York (1966).
- [4] Chandrasekhara Rao.K and Gowri.:R, On biclosure spaces, Bulletine of pure and applied sciences, 25E (2006), 171-175.
- [5] Chandrasekhara Rao.K and Gowri.R, Regular generalised closed sets in biclosure spaces, Jr. of institute of mathematics and computer science, (Math. Ser.), 19(3) (2006), 283-286.
- [6] Chvalina.J, On homeomorphic topologies and equivalent set-systems Arch. Math. (Brno), 12(2) (1976), 107-115
- [7] Chvalina.J, Stackbases in power sets of neighbourhood spaces preserving the continuity of mappings, Arch. Math. (Brno), 17(2) (1981), 81-86.
- [8] Day M.M, Convergence, closure and neighbourhoods, Duke Math. J. (1944), H:181-199.

- [9]Gnilka.S, On extended topologies I; Closure operators, Ann.Soc. Math. Pol. Ser. I, Commentat, Math., 34: 81 94, 1994
- [10] HammerP.C., Extended topology; continuity I, Portug Math., 25 (1964), 77-93.
- [11] Hausdorff.F, Gestafte Raume Fund., Math., 25 (1935), 486-502
- [12] L. Skula, System von stetigen Abbildungen, Czechoslovak Math. J, 17(92) (1967), 45-52.
- [13] J. Slapal, Closure operations for digital topology, Theoret. Comput. Sci, 305(1-3) (2003), 457-471.
- [14] M. Vigneshwaran, R. Devi. On GαO-kernel in the digital plane. International Journal of Mathematical Archive, (2012), 3(6): 2358 - 2373.