ISSN 2063-5346

STABILITY INDICATING RS METHOD DEVELOPMENT AND VALIDATION OF PREGABILIN BY UPLC

Raman S G¹, Sundhararajan R², Vijayakumar AR³, Pradeepraj D⁴, Parthiban R⁵, Mahesh PG⁶

Article History: Received: 01.02.2023	Revised: 07.03.2023	Accepted: 10.04.2023

Abstract

The objective of the work is to develop a stability indicating RP UPLC related substances method for the determination of PREGABALIN and its related impurities.For that several trials have been carried out using EMPOWER software.

Present study includes: Development of stability indicating related substances by UPLC using EMPOWER software (WATERS).Forced degradation studies according to ICH Guidelines. Validation of the method according to ICH Guidelines.

Results: The resolution between pregabalin and amide impurity was found to be 3.2, and peak tailing of pregabalin was found to be 1.2 and %R.S.D was found to be 0.41. Significant degradation was observed at room temperature and after 3,6,12, 24 Hrs.respectively. The results obtained in the solid state stability study indicate that Pregabalin is stable upon exposure to white fluorescent light. The results obtained in the force degradation study Pregabalin was stable at different Stress condition. The specificity of the method was confirmed and the method is stability indicating. The specificity of the method was confirmed and the method is stability indicating. The specificity of the impurities were found to be within the acceptable criteria. Linearity of Pregabalin pharma results: R2 values were found to be 0.999, 0.999, 0.990, and 0.999 for Amide, Lactum N-Methyl and Pregabalin, Amide, Lactum, and N-Methyl Respectively. Robustness the resolution between Amide and Pregabalin was found to be >2, peak tailing of Pregabalin was found to be 1.0. In flow variation and temperature variation the RRT remains same.

Conclusion: The developed method was successfully validated for its linearity, range, precision, accuracy and specificity in accordance with the requirements of ICH guidelines. The results of the study showed that, the proposed UPLC method was simple, rapid, precise, accurate and stability indicating, which can be used for the routine analysis for the determination of Pregabalin and its related impurities.

Keywords: Pregabalin; UPLC; ICH guidelines; photo diode array (PDA) detector.

¹Mohamed Sathak AJ College of Pharmacy, Sholinganallur, Chennai-600119, Tamilnadu, India. ²Mohamed Sathak AJ College of Pharmacy, Sholinganallur, Chennai-600119, Tamilnadu, India ³Sree Balaji Medical College and Hospital, BIHER, Chromepet, Chennai-600044. Tamil Nadu, India. ⁴School of Pharmacy, Sri Balaji Vidyapeeth Deemed to be University,Puducheery, India.

⁵Surya School of Pharmacy, Vikravandi, Tamilnadu, India.

⁶School of Pharmaceutical Sciences, Vels Institute of Science Technology and Advanced Studies, Pallavaram, Chennai 600117.

<u>Address for correspondence :</u> S.G.Raman, M. Pharm., Associate Professor, Mohamed Sathak AJ College of Pharmacy, Sholinganallur, Chennai-600119. Tamilnadu. Email. rtanush2015@gmail.com

DOI:10.31838/ecb/2023.12.s1-B.429

1. INTRODUCTION

Ultra performance liquid chromatography (UPLC) is a recent technique in liquid chromatography, which enables significant reductions in separation time and solvent consumption. Literature indicates that UPLC system allows about nine fold decrease in analysis time as compared to the conventional HPLC system using sub-2µm particle size analytical columns, and about threefold decrease in analysis time in comparison with 3-5µm particle size analytical columns without compromise on separation. Reducing overall these separation times without reducing the quality of the separation would mean that important analytical information could be generated more quickly. These particles operate at elevated mobile phase linear velocities to affect dramatic increase in resolution, sensitivity and speed of analysis. As it is very well known from Van Demeter equations. the efficiency of chromatographic process is proportional to particle size decrease. According to this model describing band broadening, it describes relationship between height equivalent of theoretical plate (HETP) and linear velocity, one of the terms (path dependent term), is dependent on a diameter of particle packed into the particle analytical column. Smaller diameter can significantly reduce HETP which results in higher efficiency and the flatter profile of Van Demeter curve. Consequently, the mobile phase flow-rate increase does not have negative influence to the efficiency as it could be observed at 10 or 5 µm particles. The negative aspect of small particle packed columns used in HPLC is, however, high back-pressure generating.

The UPLC system is connected with specially designed Acquity UPLC columns containing X-Terra sorbent of second generation. The hybrid material utilizes bridged ethylsiloxane/silica hybrid (BEH) structure, particle size is only 1.7 µm. BEH technology ensures the column stability under the high pressure and through wider

pH range (1–12) comparing to generation one X-Terra sorbent or conventional stationary phases. Acquity UPLC columns are available with C18, Shield RP18, C8 and Phenyl stationary phases. High pore volume HPLC particles do not possess the mechanical stability necessary to withstand the high pressures inherent of UPLC separations. This mechanical limitation led Waters material scientists to develop a silica particle designed for high mechanical stability appropriate and morphology necessary to provide long column lifetimes and UPLC efficiencies at high pressures. The 1.8 µm High Strength Silica (HSS) particle is the first and only 100% silica particle designed, tested and intended for use in applications up to 15,000 psi [1034 bar].

2. MATERIAL &METHODS OPTIMIZED METHOD

Buffer: 0.01M Sodium dihydrogen ortho phosphate buffer with, pH 7adjusted with NaOH

Mobile phase A : Buffer:ACN(98:2)

Mobile Phase B: ACN

Chromatographic parameters:

Column (50x2.1mm, 2.7um)	: Halo C18
Detector	: 210nm
Flow rate	: 0.3ml/min
Injector volume	: 4µL
Column oven temp	: 40°C
Run time	: 15min
Diluent (20:80 v/v).	: Water : MeOH

Gradient run:

Time(min)	Flow rate(ml/min)	%A	%B
0.0	0.3	100	0
2.0	0.3	100	0
8.0	0.3	70	30
10.0	0.3	70	30
10.5	0.3	100	0
15.0	0.3	100	0

Fig-1 chromatogram optimized method

	Peak Results									
	Peak name	RT	Area	% Area	USP Tailing	USP Resolution	S_N_Ratio			
1	PGBPHARMA	1.57	6812	2.35	1.1		24.2			
2	AMIDEIMP	2.65	16161	5.58	1.5	3.6	37.3			
3	LACTUM IMP	6.96	129433	44.66	1.0	14.9	511.7			
4	N-METHYL IMP	7.85	137386	47.41	1.0	5.0	543.2			

MATERIALS ,EQUIPMENTS REAGENTS:	SUPPLIERS:
Pregabalin and impurities	Mylan Laboratories ltd,
Sodium dihydrogen phosphate	Rankem
Methanol	Rankem
Acetonitrile	Rankem
NaOH	Rankem
Filter membrane	Whattman paper(0.22µ)
Sonicator	PCI ultra bath sonicator
Milli-Q water	Milli-Q gradient

PREPARATIONS:

MOBILE PHASE PREPARATIONS:

Mobile phase A:

Buffer preparation: 1.56 gm of Sodium dihydrogen phosphate salt was accurately weighed transferred into 1 litre milliQ water, sonicated to dissolve and pH 7 adjusted with dilute sodium hydroxide and finally filtered through 0.22 µm filter paper.

Mobile phase A: Buffer: ACN (98:2) (% v/v).

Accurately measured 980ml of buffer and 20 ml of Acetonitrile, and were transferred in to a mobile phase container mixed thoroughly, finally sonicated to degas.

Mobile phase B: Acetonitrile: 100 %

Acetonitrile, was transferred into mobile phase container, mixed thoroughly Sonicated to Degass.

PREPARATION OF SOLUTIONS:

Diluent: : MEOH: WATER (20:80) Accurately measured methanol and water 200ml, 800ml respectively with 1litre measuring cylinder and were transferred in to mobile phase container, mixed thoroughly.

1N HCL: 85ml accurately measured amount of concentrated HCL (33%) analytical grade was diluted to dissolve with Milli-Q-water, sonicated to mix, made up to 1000ml.

1N NaOH: 40gm accurately Weighed amount of NaOH was diluted to dissolve with Milli-Q-water, sonicated to mix, made up to 1000ml.

5% H₂O₂: 5ml of 30% H₂O₂ was dissolved with Milli-Q-water, and, made up to 30ml

Column Washing Solution (ACN: Water 50:50%v/v)

500mL of milliQ water & 500ml of ACN were accurately measured individually with 500ml measuring cylinder, were taken and filtered through 0.22μ filter, and mixed thoroughly to get solution of 50:50(% v/v.)

Strong needle wash solution (ACN: Water 90:10%v/v)

100 ml of Milli-Q water, 900ml of ACN were accurately measured individually with 1000ml Measuring cylinder, filtered through 0.22μ filter, and mixed thoroughly to get final solution of 100:900% v/v of Water: Acetonitrile.

Weak needle wash solution (ACN: Water 10:90%v/v)

900 ml of Milli-Q water, 100ml of ACN were accurately measured individually with 1000ml measuring cylinder, filtered through 0.22μ filter, and mixed thoroughly to get final solution of 900:100% v/v of Water: Acetonitrile

Standard stock solution (15mg/ml): Accurately weighed and transferred about 150mg of standard into a 10ml volumetric flask, dissolved in and diluted to volume with diluent.

Stock solution: All individual impurities of 15mg each and standard 15 mg individually

weighed, transferred to 100ml volumetric flasks and make up the volume with diluent

Reference solution: From Stock -1 solution taken 10ml, made up to 100 ml with diluent and final concentration was 0.015mg /ml (0.1% w.r.t. test concentration).

Sample Solution Spiked at Specification Level: Accurately weighed and transferred about 150 mg of standard into10ml volumetric flask and make up the volume with (0.1%) Reference solution.

LOQ solution: Prepared Amide Impurity, Lactum Impurity ,N-methyl impurities of 10mg each and standard 10 mg individually weighed, transferred to 10 ml volumetric flask and from above stock solutions diluted 200µL,50µL,50µL and 600µL respectively into 100 ml volumetric flask and make up to 100 ml with diluent.

LOD solution: Pipetted out from 3.3ml from LOQ solution into 10ml volumetric flask and made up to volume with diluent.

For Accuracy (sample preparations):

LOQ solution: Accurately weighed and transferred about 150mg of sample into a 10ml volumetric flask, dissolved in and diluted to volume with LOQ solution.

40% spike solution: Accurately weighed and transferred about 150mg of sample into a 10ml volumetric flask, added 4ml of reference solution, dissolve and diluted to volume with diluent.

100% spike solution: Accurately weighed and transferred about 150mg of sample into a 10ml volumetric flask, dissolved in and diluted to volume with Reference solution. **150% spike solution:** Accurately weighed and transferred about 150mg of sample into a 10ml volumetric flask, dissolved and made up to volume with Stock solution.

For Linearity (sample preparations):

Linearity stock solution: Accurately weighed and transferred (amide impurity) 15mg, (lactum impurity) 15mg, (N— methyl Impurity) 15mg, & (Pregabalin standard) 15mg in to 100ml volumetric flask and diluted to 100ml with diluent .

40% solution: Accurately transferred about 0.4ml of linearity solution in to 10 ml volumetric flask and diluted to volume with diluent.

60% solution: Accurately transferred about 0.6ml, of linearity solution in to 10 ml volumetric flask and diluted to volume with diluent.

80% solution: Accurately transferred about 0.8ml of linearity solution in to 10 ml volumetric flask and diluted to volume with diluent.

100% solution: Accurately transferred about 1ml of linearity solution in to 10 ml volumetric flask and diluted to volume with diluent.

120% solution: Accurately transferred about 1.2ml of linearity solution in to 10 ml volumetric flask and diluted to volume with diluent.

150% solution: Accurately transferred about 1.5ml, of linearity solution in to 10 ml volumetric flask and diluted to volume with diluent.

Degradation Study (Sample Solution Preparations)

Degradation study: Analyze the impurities and pregabalin individually as per the method to verify the retention times. In order to assess the stability indicating nature of the UPLC method, Pregabalin samples were stressed by acid, base, hydrogen peroxide, heat and UV radiation. The degraded samples were analyzed using a photodiode-array detector for determining the peak purity and related substances.

Sample Preparation:

Stock Solution: Accurately weighed and transferred about 1.5 gm of Pregabalin into a 100ml volumetric flask, dissolved in and diluted to volume with diluent.

Control sample: The control sample for this study was prepared by diluting 5.0 mL of stock solution to 10 ml with diluent.

* Acid Hydrolysis:

At 60°C:

Transferred 5 mL of stock solution into a 10 mL volumetric flask, added 0.2 mL of 1.0 N hydrochloric acid solution. Kept the solution at 60°C for 3, 6, 12, 24 hours, then neutralize with 0.2 mL of 1.0 N sodium hydroxide solution and diluted to 10 mL with diluent.

✤ Base Hydrolysis

At 60°C:

Transferred 5 mL of stock solution into a 10 mL volumetric flask, added 0.2 mL of 1.0 N sodium hydroxide solution. Kept the solution at 60°C for 3, 6, 12,24hours, then neutralized with 0.2 mL of 1.0 N hydrochloric acid solution and diluted to 10 mL with diluent.

Oxidation

At 60°C:

Transferred 5 mL of stock solution into a 10 mL volumetric flask, added 0.2 mL of 5% hydrogen peroxide solution.Kept the solution at 60°C for three hours, then diluted to 10 mL with diluent.

UV Degradation:

Transfered 5 mL of stock solution into a 10 mL volumetric flask .Exposed the solution to UV light with an integrated near ultraviolet energy of not less than 200 Watt hours/square meter, then diluted to 10 mL with diluent.

Heat Degradation:

Transfered 5.0 mL of stock solution into a 10 mL volumetric flask. Kept the solution at 60°C

Temperature for3, 6, 12, 24 Hours then diluted to 10 mL with diluent.

> Solid state stability:

Sample preparation:

Control sample

Accurately weighed and transferred about 150mg of Pregabalin sample into a 10 mL volumetric flask, dissolved in and diluted up to volume with the diluent.

***** Exposure to UV light:

Taken some quantity of sample, spread in a Petri dish and exposed to UV light with energy of not less than 200 Wh/sq mt. After exposure, accurately weighed and transferred about 150 mg of sample into a 10 mL volumetric flask, dissolved in and diluted up to volume with diluent.

***** Exposure to White fluorescent light:

Taken some quantity of sample, spread in a Petri dish and exposed to White fluorescent light with an overall illumination of not less than 1.2 million lux hours. After exposure, accurately weighed and transferred about 150 mg of sample into a 10 mL volumetric flask, dissolved in and diluted to volume with diluent.

Heat Degradation:

Taken about some quantity of sample, spread in a Petri dish and exposed to 105°C for 24Hrs. After exposure, accurately weighed and transferred about 150mg of sample into a 10 mL volumetric flask, dissolved in and diluted to volume with diluent.

3. RESULTS

1. SYSTEM SUITABILITY:

Reference solution at 100% level is injected 6 times and analyzed.

Figure -2: Chromatogram of System suitability

Table-1: System suitability

S.no	Peak area of Pregabalin
1	7588
2	7532
3	7564
4	7511
5	7568
6	7588
Average	7558.5
SD	31.0467
%RSD	0.41

Resolution	
between	2.7
Pregabalin	3.2
and Amide	
Peak tailing	1.0
of Pregabalin	1.2

System Suitability Peak Results

Acceptance criteria:

The resolution between Pregabalin and amide impurity Peak should be not < 2.

Peak tailing of pregabalin should be <2

% R.S.D For six replicate injections should be less than 2.0

Conclusion:The resolution between pregabalin and amide impurity was found to be 3.2, and peak tailing of pregabalin was found to be 1.2 and %R.S.D was found to be 0.41

1.5.2 SPECIFICITY:

Fig 4 chromatogram of AMIDE impurity

	Peak Results									
	Peak name	RT	Area	% Area	USP Tailing	Purity_Test	Purity1 Angle	Purity1 Threshold		
1	AMIDEIMP	1.98	181 457	100.00	0.9	Pass	5.101	39.350		

Fig-5 Chromatogram of N-Methyl impurity

Fig -6Chromatogram	of LACTUM	impurity
0 0		

Peak Result	s
-------------	---

	Peak name	RT	Area	% Area	USP Tailing	Purity_Test	Purity1 Angle	Purity1 Threshold
1	LACTUM IMP	6.93	7611712	100.00	1.2	Pass	4.179	25.599

Fig -8Chromatogram of the 0.1% reference solution:

	Peak Results									
	Peak name	RT	Area	% Area	USP Tailing	USP Resolution	S_N_Ratio			
1	PGBPHARMA	1.57	6812	2.35	1.1		24.2			
2	AMIDEIMP	2.65	16161	5.58	1.5	3.6	37.3			
3	LACTUM IMP	6.96	129433	44.66	1.0	14.9	511.7			
4	N-METHYL IMP	7.8 5	137386	47.41	1.0	5.0	543.2			

Purity1 Angle	Purity1 Threshold	Purity_Test
24.582	90.000	Pass
19.440	90.000	Pass
2.846	63.708	Pass
4.739	90.000	Pass

Fig-9 peak purity of Lactum impurity

Fig -10 Purity plot of the PREGABALIN

Fig- 12 Purity plot of N-METHYL IMPURITY

Table-2	Degradation	Study : A	AFTER 3	HOURS
---------	-------------	-----------	---------	-------

Degradati on	1NHCl		1N	1N NaOH		5% H ₂ 0 ₂	
condition	API (%are a)	% Degradati on	API (%are a)	% Degradati on	API (%are a)	% Degradati on	
Acid hydrolysis at 60 °C for 3 Hrs	99.55	0.45	NA	NA	NA	NA	Pass
Base hydrolysis at 60 °C for 3Hrs	NA	NA	99.56	0.44	NA	NA	Pass
Oxidation at RT at 60 °C for 3 Hrs	NA	NA	NA	N.A	99.56	0.44	Pass

Eur. Chem. Bull. 2023, 12(Special Issue 1, Part-B), 4312-4352

Fig -13 Acid hydrolysis A/F 3 hours

PREGABILIN BY UPLC

Fig – 14 Base hydrolysis A/F 3 hours

_		_	_		-	
Р	ea	k	R	es	nl	ts
			_			

	Peak name	RT	Area	% Area	USP Tailing	USP Resolution	Purity1 Angle	Purity1 Threshold	Purity_Test
1	PGB-PHARMA	1.59	4114047	99.56	1.1		3.033	5.118	Pass
2	LACTUM IMP	6.99	18057	0.44	0.9	26.5	17.267	90.000	Pass

Fig-15 Oxidation A/F 3 hours

Table-3 Degradation	Study:	AFTER	6 HOURS
---------------------	--------	-------	----------------

:		NHCI	1N I	NaOH	5% H ₂ 0 ₂		Purit y
Degradation condition	API (%are a)	% Degradati on	API (%are a)	% Degrada tion	API (%are a)	% Degradati on	test
Acid hydrolysis 60°C 6 Hrs	97.41	2.59	NA	NA	NA	NA	Pass
Base hydrolysis at 60°C for 6Hrs	NA	NA	97.45	2.55	NA	NA	Pass
Oxidation at RT 60 °C for 12 Hrs	NA	NA	NA	N.A	99.86	0.14	Pass

Fig- 16 Acid hydrolysis A/F 6 hours

Fig – 17 Base hydrolysis A/F 6 hours

	RT	Area	% Area	USP Tailing	USP Resolution	Purity1 Angle	Purity1 Threshold	Purity_Test
1	1.59	4357103	97.45	1.1		2.316	9.262	Pass
2	6.99	114082	2.55	1.1	27.0	2.661	90.000	Pass

Degradati	1N HCl		1N NaOH		5%H ₂ 0 ₂		purit y test
on condition	API (%are a)	% Degradati on	API (%are a)	% Degradati on	API (%are a)	% Degradati on	
Acid hydrolysis at 60°C for 12 hrs	97.02	2.98	NA	NA	NA	NA	Pass
Base hydrolysis at 60 °C for 12Hrs	NA	NA	99.55	0.45	NA	NA	Pass
Oxidation at RT 60°C for 12 Hrs	NA	NA	NA	N.A	97.45	2.55	Pass

Fable- 4 Degradation	n Study.	AFTER	12 HOU	RS
rable- 4 Degrauation	II Stuuy:	AFICA	12 HUU	ND

Eur. Chem. Bull. 2023, 12(Special Issue 1, Part-B), 4312-4352

r

Fig -19Acid hydrolysis A/F 12 hours

Fig-20 Base hydrolysis A/F 12 hours

Table-5 Degradation Study : AFTER 24 HOURS

Degradation	1N HCl		1N NaOH		5% H ₂ 0 ₂		purit
condition	API (%area)	% Degradati on	API (%are a)	% Degradati on	API (%are a)	% Degradatio n	y test
Acid hydrolysis 60 deg 24 hrs	90.67	9.33	NA	NA	NA	NA	Pass
Base hydrolysis at 60 deg for 24Hrs	NA	NA	97.41	2.59	NA	NA	Pass
Oxidation at RT 60 deg for 24 Hrs	NA	NA	NA	N.A	89.63	10.37	Pass

Fig – 21 Oxidation A/F 12 hours

Fig-22 Acid hydrolysis A/F 24 hours

	Peak Results									
	Peak name	RT	Area	% Area	USP Tailing	USP Resolution				
1	PGB-PHARMA	1.67	4386174	90.67	1.2					
2	LACTUM IMP	6.99	451561	9.33	1.0	25.9				

Purity1 Angle	Purity l Threshold	Purity_Test
2.316	9.262	Pass
2.661	90.000	Pass

Fig -23 Base Hydrolysis A/F 24 hrs

Fig -24 Oxidation A/F 24 hours

USP Tailing	USP Resolution	Purity1 Angle	Purity1 Threshold	Purity_Test
1.1		2.265	6.599	Pass
1.1	27.0	2.661	90.000	Pass

Conclusion: Significant degradation was observed at room temperature and after 3,6,12, 24 Hrs Respectively

Table-6 Solid state stability:

Characterization condition	Degradation report	Purity test
UV light	ND	Pass
White fluorescence light	ND	Pass
Thermal degradation	ND	Pass

Conclusion:-

The results obtained in the solid state stability study indicate that Pregabalin is stable upon exposure to white fluorescent light.

- a) The results obtained in the force degradation study Pregabalin was stable at different stress condition
- b) The specificity of the method was confirmed and the method is stability indicating.
- c) The specificity of the method was confirmed and the method is stability indicating.

Establishment of LOQ by Signal-to-noise ratio method: A Solution of Amide, Lactum, N-Methyl and Pregabalin of 0.1% is analyzed for Signal to noise ratio. Based on the S/N ratio of 0.1% blend solution LOQ Solution is prepared accordingly.

The S/N ratios of Amide, Lactum, N-Methyl Impurities and Pregabalin are as follows:

Impurity Name	Amide Impurity	Lactum Impurity	N-Methyl Impurity	Pregabalin
LOQConcentration in mg/mL	0.002	0.0005	0.005	0.006
LOQ (%)Concentration with respect to test	0.010	0.003	0.030	0.040
S/N Ratio For LOQ solution	10.51	9.91	9.95	9.93

Table- 7 Establishment of LOQ

Fig- 25 chromatogram of LOQ

Table : Establishment of LOQ results

	Peak Results						
	Peak name	RT	Area	% Area	USP Tailing	USP Resolution	S_N_Ratio
1	PGB-PHARMA	1.57	2088	30.85	1.1		9.9
2	AMIDEIMP	2.68	2103	31.06	1.0	5.7	10.5
3	LACTUM IMP	6.96	1367	20.19	0.9	26.7	9.9
4	N-METHYL IMP	7.83	1211	17.90	0.7	7.6	10.0

LOD Solution of Amide, Lactum, N-Methyl and Pregabalin is diluted for 3.3 times and analysed for LOD.

The S/N ratios of Amide, Lactum, N-Methyl Impurities and Pregabalin are as follows:

Impurity Name	Amide Impurity	Lactum Impurity	N-Methyl Impurity	Pregabalin
Concentration in mg/mL at LOD	0.0006	0.00015	0.0015	0.0018
Concentration(%) with respect to test at LOD	0.004	0.001	0.010	0.012
S/N Ratio at LOD	3.76	3.44	3.10	3.59

Table -8 Establishment of LOD	by	Signal-to-noise	ratio method	d:
-------------------------------	----	-----------------	--------------	----

Fig -26 Chromatogram of LOD

	Peak Results						
	Peak name	RT	Area	% Area	USP Tailing	USP Resolution	S_N_Ratio
1	PGB-PHARMA	1.59	786	29.79	1.0		3.6
2	AMIDEIMP	2.69	1088	41.28	1.0	5.2	3.8
3	LACTUM IMP	6.97	563	21.35	0.9	22.6	3.4
4	N-METHYL IMP	7.80	200	7.58	0.6	2.8	3.1

Conclusion:

LOQ and LOD values of all the impurities were found to be within the acceptable criteria **LINEARITY**

Linearity was conducted from LOQ to 150% with respect to sample solution.

Fig-30 Linearity at 60% level :-

Fig- 32 Linearity at 100 % level:

Fig-33 Linearity at 120% level:

Level	Conc.(mg/ml)	Peak area	
LOQ	0.002	3783	
40%	0.006	8498	
60%	0.009	12620	
80%	0.012	16888	
100%	0.015	21034	
120%	0.018	25075	
150%	0.023	31872	
Slope	1380384		
Intercept	427.075		
Correlation coefficient	0.999		

Table 10-Linearity of AMIDE impurity result

Fig-36 Linearity graph of Lactum impurity

Table 11: Linearity of LACTUM impurity Result

Level	Conc.(mg/ml)	Peak area	
LOQ	0.0005	3884	
40%	0.006	52267	
60%	0.009	81572	
80%	0.012	108837	
100%	0.015	134453	
120%	0.018	162945	
150%	0.0225	203784	
Slope	9145379		
Intercept	-1805.63		
Correlation coefficient	0.999		

Fig- 37 Linearity graph of N-Methyl impurity

Level	Conc.(mg/ml)	Peak area		
LOQ	0.005	3884		
40%	0.006	57536		
60%	0.009	86883		
80%	0.012	115671		
100%	0.015	145236		
120%	0.018	173715		
150%	0.0225	216832		
Slope	9683721			
Intercept	-570.269			
Correlation coefficient	0.990			

Fig-38 Linearity graph of PGB -PHARMA

Level	Conc.(mg/ml)	Peak area	
LOQ	0.006	2849	
40%	0.006	3029	
60%	0.009	4502	
80%	0.012	6187	
100%	0.015	7536	
120%	0.018	9132	
150%	0.0225	11363	
Slope	511093.7		
Intercept	-90.54		
Correlation coefficient	0.999		

Table- 13 Linearity of Pregabalin pharma results

Acceptance Criteria:

The plot of concentration versus peak area for each impurity and Pregabalin should be linear with a correlation coefficient (R^2) not less than 0.990.

Conclusion: R² values were found to be 0.999, 0.999,0.990,0.999 for Amide ,Lactum N-Methyl and Pregabalin respectively

PRECISION:-

Fig- 39 Chromatogram of blank

A. LOQ PRECISION

A Solution of LOQ was prepared, injected six times and then analyzed

Table 14: LOQ Precision result

Inj.	PGB- Pharma	Amide impurity	Lactum impurity	N-Methyl impurity
Inj 1	1869	3067	1852	5057
Inj 2	1863	3162	1986	5168
Inj 3	1879	3098	2012	5179
Inj 4	1869	3058	1940	5128
Inj 5	1843	3293	1879	4965
Inj 6	1897	3193	1933	5099
Average	1870	3145	1933	5101
STDEV	16.27	82.01	55.63	71.60
%RSD	0.87	2.60	2.80	1.40

Acceptance Criteria: The % RSD of peak areas for each impurity should be ≤ 5.0 Conclusion: The %RSD was found to be 0.87, 2.60, 2.80, 1.40 for Pregabalin, Amide ,Lactum ,N-Methyl Respectively

METHOD PRECISION:

A Solution of, Pregabalin spiked with corresponding impurities at 100% level was prepared six times and then analyzed.

	AREA			% Recovery		
No. of Injections at 100% Level	Amid e impur ity	Lactum impurity	N- Methyl Impurit y	Amide	Lactum impurity	N-Methyl impurity
Inj 1	21113	134902	144531	99.62	99.66	100.48
Inj 2	20962	134498	144653	100.34	99.96	100.4
Inj 3	21142	134451	144730	99.48	100	100.34
Inj 4	20824	134474	144920	101	99.98	100.21
Inj 5	21628	134536	144479	97.25	99.93	100.52
Inj 6	21079	134485	1445127	99.78	99.97	100.07
Average	21124	134557	144740	99.57	99.91	100.33
STDEV	249	156	224	1.16	0.11	0.15
%RSD	1.17	0.11	0.15	1.16	0.11	0.15

Table 15 : method precision result

Acceptance Criteria: The % RSD for Recovery obtained for each impurity should be ≤ 5.0 .

Conclusion: The %RSD was found to be within the limits and results were satisfactory.

SYSTEM PRECISION:

Analysis was performed using a 100 % specification level of API and its impurities mix solution, (Reference Solution) injected 6 times & then analyzed.

No of Injection	Area						
s at 100% level	PGB-Pharma	Amide Impurity	Lactum impurity	N-methy limpurty			
Inj 1	9222	14062	140328	145739			
Inj 2	9234	14088	140284	145525			
Inj3	9267	14103	140199	145520			
Inj 4	9275	14090	140322	145602			
Inj 5	9236	14086	140312	145643			
Inj 6	9249	14116	140234	145712			
Average	9247	14090	140279	145623			
STDEV	20.48	11.61	47.07	73.30			
%RSD	0.22	0.08	0.03	0.05			

Table16 : System precision result

System Precision, Peak result

Acceptance Criteria: The % RSD of peak areas of replicate injections for each impurity should be ≤ 5.0

Conclusion: The %RSD was found to be within the limits and results were satisfactory.

1.5.5 ACCURACY:

Accuracy was conducted from LOQ to 150% with respect to sample solution

Fig- 42 Chromatogram of blank

Fig-43 0.1% Reference solution :-

Eur. Chem. Bull. 2023, 12(Special Issue 1, Part-B), 4312-4352

Table 17: ACCURACY AT LOQ LEVEL

Level	Actual Area			Area Found		
LOQ	Amide Impurity	Lactum Impurity	N-Methyl Impurity	Amide Impurity	Lactum Impurity	N-Methyl Impurity
Prep-1	3783	2569	2884	3790	2572	2889
Prep-2	3785	2572	2889	3779	2576	2896
Prep-3	3790	2576	2890	3795	2580	2896

Level	Actual Area			Area Found		
40% Level	Amide Impurity	Lactum Impurity	N-Methyl Impurity	Amide Impurity	Lactum Impurity	N-Methyl Impurity
Prep-1	`8498	52267	57536	8513	52273	57542
Prep-2	8501	52270	57540	8512	52282	57548

Table 18:ACCURACY AT 40 % LEVEL

Table 19 :ACCURACY AT 100% LEVEL

Level	Actual Area			Area Found		
100% Level	Amide Impurity	Lactum Impurity	N-Methyl Impurity	Amide Impurity	Lactum Impurity	N-Methyl Impurity
Prep-1	21034	134453	145236	21039	134462	145245
Prep-2	21042	134459	145246	21056	134462	145261

Table 20:ACCUARACY AT 150% LEVEL

Level		Actual Are	ea	Area Found		
150% Level	Amide Impurity	Lactum Impurity	N- Methyl Impurity	Amide Impurity	Lactum Impurity	N-Methyl Impurity
Prep-1	31872	162945	216832	31885	162956	216852
Prep-2	31879	162952	216840	31890	162960	216854

Table 21- Recovery at each level -

NAME OF THE IMPURITY	% R.S.D & RECOVERY AT EACH LEVEL					
	AT LOQ LEVEL	AT 40 % LEVEL	AT 100% LEVEL	AT 150% LEVEL		
AMIDE IMPURITY	100	100	99.9	99.9		
% RSD	0.077	0.017	0.019	0.010		
LACTUM IMPURITY	99.8	99.9	99.8	99.2		

%R.S.D	0.111	0.002	0.002	0.002
N-METHYL IMPURITY	99.8	99.9	99.7	99.9
%R.S.D	0.090	0.003	3.00	0.001

Conclusion: The %RSD, % recovery was found to be within the limits and the results were satisfactory.

ROBUSTNESS

Parameters	Char cond	nge of itions	Tailing factor for PREGABALIN	Resolution between Pregabalin and Amide imp
Flow	Actual	0.30	1.0	3.6
variation	Low	0.28	1.1	3.4
(ml/min)	High	0.32	1.1	3.2
Column	Actual	40.0	1.0	4.2
oven temp. variation	Low	38.0	1.1	3.9
In (°C)	High	42.0	1.3	4.3

Table22 :Robustness

Table 23. Robustness at low temparature (30 C)
--

Inj.	PGB- Pharma	Amide impurity	Lactum impurity	N-Methyl impurity
Inj 1	11425	21464	139214	141934
Inj 2	11046	21780	139510	141570
Inj 3	11272	21556	139265	141699
Inj 4	11061	21772	139307	141563
Inj 5	10981	21425	139582	141645
Inj 6	10844	21327	139056	142701
Average	11101.83	21554	139322	141852
STDEV	191.13	170.72	177.40	399.33
%RSD	1.72	0.79	0.12	0.28

	PGB- Pharma	Amide impurity	Lactumimpurity	N-Methyl impurity
Inj 1	11137	21595	139455	142996
Inj 2	11153	21446	139208	143507
Inj 3	11278	21735	139682	142632
Inj 4	11054	21169	139223	142361
Inj 5	11063	21727	139704	142975
Inj 6	10814	21804	139412	142648
Average	11083.17	21579.33	139447	142853
STDEV	141.09	217.14	195.72	364.22
%RSD	1.27	1.00	0.14	0.25

Table 24:	Robustness	at High	temperature	(42°C)
				· /

Fig- 48 At High Temperature (42°C)

	Peak Results								
	Peak name	RT	Area	% Area	RT Ratio	USP Tailing	USP Resolution	Relative RT (min)	
1	PGB-PHARMA	1.54	10672	3.35		1.1			
2	AMIDEIMP	2.50	22600	7.09	1.63	1.9	4.1	0.964	
3	LACTUM IMP	6.94	139988	43.93	4.50	1.0	19.6	5.396	
4	N-METHYL IMP	7.81	145388	45.63	5.07	1.0	4.9	6.270	

	PGB- Pharma	Amide impurity	Lactum impurity	N-Methyl impurity
Inj 1	11848	22602	154960	154424
Inj 2	11678	22429	154887	155048
Inj 3	11630	22427	154840	155038
Inj 4	11902	22989	154991	155844
Inj 5	11604	22461	154955	154170
Inj 6	11817	22083	154268	155739
Average	11746.	22498	154816	155043
STDEV	114.03	269.34	250.53	615.27
%RSD	0.97	0.19	0.16	0.39

Table 25 : Robustness at Low flow (0.28ml/min) Chromatogram

	Peak Results									
	Peak name	RT	Area	% Area	RT Ratio	USP Tailing	USP Resolution	Relative RT (min)		
1	PGB-PHARMA	1.69	11615	3.37		1.1				
2	AMIDE IMP	2.77	24955	7.25	1.63	1.8	4.3	1.073		
3	LACTUM IMP	7.14	155342	45.10	4.22	1.0	18.6	5.448		
4	N-METHYL IMP	8.02	152496	44.28	4.74	1.0	5.0	6.330		

Table 26: Robustness at High flow (0.32ml/min)

	PGB- Pharma	Amide impurity	Lactumim purity	N-Methyl impurity
Inj 1	10161	23022	125318	130208
Inj 2	10111	20375	125567	130437
Inj 3	10037	20281	125856	129980
Inj 4	10027	20075	125112	131021
Inj 5	9882	20710	125896	130189
Inj 6	10055	20433	125166	130296
Average	10045	20366	125485	130355
STDEV	86.47	190.06	311.46	327.50
%RSD	0.86	0.93	0.24	0.25

Fig -50 At High flow (0.32ml/min)

_	Feak Results									
	Peak name	RT	Area	% Area	RT Ratio	USP Tailing	USP Resolution	Relative RT (min)		
1	PGB-PHARMA	1.43	9726	3.42		1.1				
2	AMIDEIMP	2.33	10969	3.86	1.64	0.9	4.6	0.908		
3	LACTUM IMP	6.76	131213	46.12	4.74	1.0	23.1	5.337		
4	N-METHYL IMP	7.62	132572	46.60	5.35	1.0	4.8	6.197		

Acceptance criteria:

The resolution between Pregabalin and Amide impurity should be not < 2.

Peak tailing of Pregabalin should be not more than 2

Conclusion: The resolution between Amide and Pregabalin was found to be >2, peak tailing of Pregabalin was found to be 1.0.

In flow variation and temperature variation the RRT remains same

4. DISCUSSION and CONCLUSION

A Robust method for Pregabalin was developed using ACQUITY UPLC H-Class system running Empower Software. From the obtained results it can be concluded that the above method is quite precise, accurate, simple, and repeatable method with a shorter run time of 15 minutes. After multiple trials, by carrying out the changes of mobile phase composition, pH, temperature, flow rate the method was found to be optimised at total run time of 15minutes, using HALO C18,(50x2.1 mm, 2.7µm) column, flow rate at 0.3ml/min, injection volume 4μ l .sodium dihydrogen salt is used as buffer (PH 7) with NaOH Buffer and ACN (98:2 v/v) as mobile phase-A and Acetonitrile (100%) as mobile phase-B, detection wavelength of 210nm. Stress studies were performed at a concentration of 15mg/ml of drug. The linearity studies were performed at LOQ, 40%, 60%, 80%, 100%, 120%, 150% of the specification level with respect to sample.

The developed method was successfully validated for its linearity, range, precision, accuracy and specificity in accordance with the requirements of ICH guidelines.The results of the study showed that, the proposed UPLC method was simple, rapid, precise, accurate and stability indicating, which can be used for the routine analysis for the determination of Pregabalin and its related impurities.

7. FUNDING

This research does not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

8. REFERENCE

- Lena Ohannesian, Anthony J Streeter. 2008. Hand Book of Pharmaceutical Analysis.In Drugs and Pharmaceutical Sciences.Vol 117. James Swarbrick (Ed.).Marcel Dekker, Inc., New York; 87- 88,104.
- ICH guideline, Q3A (R2) Impurities in New Drug Substances, Food and Drug Administration, USA, February 2006
- ICH guideline, Q3B (R2) Impurities in New Drug Products, Food and Drug Administration, USA, February 2006
- 4. Kavitapilaniya and ,harish.k: Recent trends in impurity profile of pharmaceuticals j Adrpharm Techno Res,2010,1(3),302-310
- 5. ICH guideline, Q3A (R2) Impurities in New Drug Substances, Food and Drug Administration, USA, February 2006.
- 6. Swartz,M E.;Murphy,B.J: Ultra performance liquid chromatography, tomorrow's Hplc technology today. *Lab Plus Int* 2004, *18* (3): 6-9.
- UPLC -An introduction and review ,Michel E,Swartz ;waters corporation ,Milford ,Massachusetts ,USA ;Journal of Liquid Chromatography & Related technologies ,28: 1253 -1263 ,2005
- Satinder Ahuja Henrik Rasmussen Hplc Method Development For Pharmaceuticals 2007 1st Edition 452-455.
- 9. Lioyd R.Snyder: Practical Hplc Method Development, 3rd Edition:751-780

- Satinder Ahuja Henrik Rasmussen ;Hplc Method Development For Pharmaceuticals 2007 1st Edition:452-455.
- Lena Ohannesian, Anthony J Streeter. 2008. Hand Book of Pharmaceutical Analysis.In Drugs and Pharmaceutical Sciences. Vol 117.James Swarbrick (Ed.).Marcel Dekker, Inc., New York; 87-88,104
- 12. ICH guideline, Validation of analytical procedures, text and methodology Q2 (R1)
- Khopkar SM. 2004. Basic Concepts of Analytical Chemistry.New Age International (P) Ltd., : New Delhi; 1-5, 20-24.
- James W Munson. 2001. Pharmaceutical Analysis Modern Methods. Part – B. Marcel Dekkerss, Inc., New York; 15-38.
- Hobart H Willard, Lynne L Merritt, Jr., John A Dean, Frank A Settle, Jr. 1986. Instrumental Methods of Analysis. 7th edn., CBS Publishers and Distributors: New Delhi; 1, 592, 622-628.
- Mendham J, Denney RC, Barnes JD, Thomas MJK. 2008. Vogel's Text book of Quantitative Chemical Analysis. 6th edn., Dorling Kindersley(India) Pvt. Ltd., New Delhi; 29,36,289-295.
- Sethi PD. 1997. Quantitative Analysis of Drugs in Pharmaceutical Formulations. 3rd edn., CBS Publishers and Distributors: New Delhi; 6-9.
- Douglas A Skoog, Donald M West, James F Holler, Stanley R Crouch. 2007.Fundamentals of Analytical Chemistry. 8th edn., Thomson Asia Pvt. Ltd: Singapore; 4, 921, 975.
- 19. Ashu M, Parmar S, Nagarajan K. Development and validation of rapid HPLC method for determination of Pregabalin in bulk drug and capsule dosage forms Der Pharma Chemica 3(1): 482-489 2011
- 20. Prashant P, Tanmay S. Development and validation of HPLC method for the determination of pregabalin in bulk and

in pharmaceutical formulations Research Journal of Pharmacy and Technology 5(6) : 2012

- Kasawar G. B, Farooqui M. N. Development and Validation of HPLC Method for the Determination of Pregabalin in Capsules. Indian Journal of Pharmaceutical Sciences 72(4): 517–519. 2010.
- Kannapan N Nayak S.P.,Venkatachalam T., Prabhakaran V. Analytical RP-HPLC Method for Development and Validation of Pregabalin and Methylcobalamine in Combined Capsule Formulation Journal of Applied Chemical Research, 13, 85-89 (2010)
- 23. Sarvesh Kumar Mishra, B.M.gurupadhyya and Surajpal

Verma. Stability Indicating RP-HPLC method for determination of pregabalin using ICH guidelines. International Journal of Natural Product Science 1: 130 2012

- 24. Narmada P, Vijaya lakshmi G. RP-HPLC method development and validation for determination of methylcobalamin and pregabalin in combined capsule dosage form.International journal of pharmaceutical sciences 4(1) 25-29. 2013
- 25. Naresh Chandra Reddy M and Chandra Sekhar. RP-HPLC Determination of Related substances of Pregabalin in bulk and pharmaceutical dosage form, International Journal of Chemical and Pharmaceutical Sciences. 3 (2). 2012.