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Abstract: The field of chemical hyperspectral (CHS) imaging is one that is still in the process of evolving, but it already has a 

wide range of applications in a variety of fields, including the military and the civilian sector. The detection and localization of 

materials based on the known spectrum properties of those materials is one application that may be carried out with the use of HS 

spectral data. In this paper, we develop a deep convolutional neural network to sense the minerals from the hyper spectral images 

using remote sensing. The images collected are used to classified using the deep learning model that classifies the instances and 

provides accurate results. The simulations are conducted to evaluate the efficacy of the model in detecting the minerals from the 

hyperspectral images. An accuracy of 92% is obtained during testing than other methods. 
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INTRODUCTION 

The normally faint radiance that emanates from the chemical 

compounds of interest is effectively hidden and distorted as a 

result of the presence of a myriad of other light sources that are 

present in the clutter and environment. As a result, this endeavor 

is extremely difficult because it presents an extremely difficult 

challenge. Unmixing the data using the pure-pixel or 

endmember assumption that the target materials can be located 

in a few individual pixels without interference from other 

brightness sources is a common method for separating the 

radiance components that are present in the data. This 

assumption states that the target materials can be located in the 

few individual pixels. One other way that can be utilized is the 

examination of the likelihood ratio using a statistical 

methodology [1]. 

It is well knowledge that subpixel or mixed-pixel targets present 

a significant number of obstacles when contrasted with the 

more traditional endmember processing. The targets in question 

are either too small to be seen, or they are partially obscured by 

foliage or some other kind of cover. Both of these scenarios are 

possibilities. Statistical approaches such as adaptive matched 

detectors and adaptive subspace detectors are two examples of 

the kinds of approaches that can be utilized for this kind of 

objective. These two detectors both have adaptive capabilities. 

Both of these methods execute generalized likelihood ratio 

testing on the data by first whitening it with background sample 

covariance matrices and then projecting the data into the 

spectral subspace of the goal. This is done in order to determine 

whether or not the data meet the goal criteria. This is done in 

order to make certain that the statistics are accurate 

representations of the goal [2]. 

Remote sensing, geological field work, geophysical research, 

and geochemical surveys are some of the methods that are 

utilized in the process of mineral exploration. For a number of 

decades now, geologists have depended on remote sensing in 

order to locate mineralization by describing and delineating 

geological, structural, and lithological features. It is now 

possible, with the assistance of multispectral and/or 

hyperspectral sensors, as well as important advancements in the 

field of remotely sensed image analysis, to classify rocks and 

minerals into different categories according to the spectral 

characteristics they possess [3]. 

Mineral exploration has recently begun to make use of remote 

sensing, particularly in the form of the meticulous 

characterization of fault/fracture zones and/or minerals that 

have been subjected to hydrothermal alteration. This is done 

with the intention of achieving the aforementioned objective. 

These essential radicals are always present in minerals that are 
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formed by more sophisticated argillic alteration processes. The 

mineral products that come about as a result of propylitic 

alteration have a high absorption capability. These HAZs are 

grouped together in rings that spiral outward from the center of 

the ore and get progressively more intense as they move further 

away from the center [4]-[6]. 

Because of this, a GIS-based approach to the development of 

mineral potential maps using remote-sensing data has become 

a useful tool that is both efficient and accurate for the selection 

of target areas for mining exploration [7, 8]. Recent 

developments in GIS-based approaches to spatial analysis have 

resulted to improvements in pinpointing probable areas for the 

locations of hydrothermal mineral resource locations [9-10]. 

This is because mineral exploration relies heavily on GIS-based 

integration of spatially scattered remote-sensing data, which is 

a crucial component of the field of remote sensing. This is due 

to the fact that digital overlay techniques can be used to merge 

disparate information, which ultimately results in improved 

mineral prospecting maps [11]. 

Because each GIS predictive layer is given a weight that 

represents its significance in the process of modeling [12], the 

GIS-based knowledge-driven technique is excellent at 

producing predictive maps that are based on the decision of 

specialists. This is because the weights that are assigned to the 

GIS predictive layers are represented by their significance in the 

process. Additionally, in the prospective method of analysis, a 

relative value was assigned to each evidence map that displayed 

HAZs and/or fracture/fault zones. If we go with a plan that takes 

into account a number of different aspects, we can expect that 

the regions that have the highest aggregate weight after we have 

compiled the scores for all of the categories will be the ones in 

which we have the greatest likelihood of finding mineral and 

metal reserves. 

RELATED WORKS 

In order to map, Noori et al. [13] assessed a large number of 

image processing algorithms. Using ASTER data, they aimed 

to complete the mapping. Mineral assemblages formed as a 

result of hydrothermal alteration were found to be slightly 

different from those formed as a result of undisturbed rocks, and 

these differences were mapped. The research concluded that 

there are multiple analysis perform, and that a thorough 

exploration of the region should account for these. 

The work of Guha et al. [14], who used emittance spectroscopy 

to examine the distribution of phosphate in carbonate-rich strata 

by data. Phosphorite was mapped and separated from its host-

rock lithologies in this way. This image was instrumental in 

achieving the aims of this study. The RBD is also able to tell 

the difference between high- and low-quality phosphorite 

exposures. The authors suggest utilising the RBD of broadband 

ASTER thermal infrared (TIR) bands to research phosphorite 

in globally analogous geological systems. 

Using ASTER data, Pour et al. [15] mapped out where listvenite 

occurs inside to extract spectral information for the goal of 

identifying alteration mineral assemblages and listvenites. It 

was done so that we could recognise listvenites and other 

minerals involved in the alteration process.  

The goal was to figure out what drove gold mineralization here. 

However, the data fusion technique demonstrates that gold-

quartz veins are more commonly seen in areas of chlorite-

epidote alteration that coincide with dense lineament crossings. 

However, it does not appear that gold occurrences are spatially 

associated with any specific lithological units [16].  

Sun et al. [17] combined geochemical data with ground-based 

hyperspectral imaging to mine sediment-hosted scattered gold. 

Combining this finding with information on geochemical 

processes required. 

By combining information from a number of sensors on satellite 

images, Zoheir et al. [18] were able to create a picture, 

researchers were able to gain a more in-depth for performing 

more detail research which helps for understanding several 

investigation. 

Pour et al. [19] used multispectral remote sensing data from 

Landsat-8, ASTER, and WorldView-3 to examine copper-gold 

mineralization at the regional, local, and district scales. This 

type of mineralization was discovered in Northwest Greenland 

Northeastern Inglefield Mobile Belt (IMB).  

Bayesian networks were studied by Bolouki et al. [20] to 

determine if they might be used effectively in remote sensing 

of epithermal gold deposits, it was decided to employ a 

Bayesian network classifier.  

Drill-core samples from the Bolcana porphyry copper-gold 

deposit were analysed for their mineral richness by Tuşa et al. 

[21]. They did this by combining data from a mineral liberation 

analyzer with data from a scanning electron microscope and 

analysing the resulting images. When it was necessary to merge 

it using several machine learning algorithms were put into use. 

All of these techniques were put to good use. Somewhat 

quantitative data was plotted from drill-core samples. 

The technique used band ratios and principal component 

analysis to create a map of the rearranged lithologies and 

minerals. It was decided to use this approach (PCA). Image 

processing methods were used to create the mineral 

prospectivity maps, and then fuzzy logic modelling was used to 

combine the many individual theme layers. At both the regional 

and district sizes, the most promising and economically 

promising zones of hydrothermal ore mineralization and 

carbonate-hosted Pb-Zn mineralization have been identified 

and highlighted. Carbonates were discovered to be the hosting 

material for these two forms of mineralization [22]. 

PROPOSED METHOD 

The satellite photos were analyzed in order to get a better 

understanding of the specific location of the chromite resources. 

The preliminary exploration work that was carried out at the site 

began with the finding of harzburgite and dunite lithologies, 

which served as the first stage in the process. In the process of 

mapping ophiolites, two of the techniques that are recognized 

in the scientific community were utilized. These methodologies 

were the principal component analysis and a number of band 

rationing procedures. In the course of this investigation, the 

remote sensing research referred to a map of the local geology 

whenever it needed a point of reference. A step known as 

preprocessing had to be completed on the data set before it was 

possible to use those records in further processing. During this 

stage, the bands were adjusted in order to take into account a 

variety of factors, including the topography, the climate, the 

level of radioactivity, and the general form of the area. 

When it came to the challenge of separating lithology units, 

using VNIR and SWIR data series proved to be extremely 

beneficial. Band ratio images, which were developed to 

demonstrate the spectral contrast of specific absorption 
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features, find widespread use in geological remote sensing as a 

result of the fact that their creation was predicated on the 

spectral reflectance of rocks and the minerals that compose 

them. Band ratio images were developed to demonstrate it. 

Band ratio analysis uses a wide range of different things in 

remote sensing, some examples of which are lithological 

mapping and mineral extraction. When doing exploration, band 

ratio can also be utilized as a method for locating serpentinite, 

dunite, and ophiolite harzburgite. 

During the process of mapping ophiolite rocks, metabasalt, and 

metagabbro units, Amer utilized band ratios of (2 + 4)/3, (5 + 

7)/6, and (7 + 9)/8. These band ratios were utilized in the 

process of differentiating ophiolite rocks from granite rocks. 

Because the authors came to the conclusion that the new band 

ratios are superior for recognizing and differentiating between 

ophiolitic lithological units as a result of their research, these 

ratios were used in this analysis. This conclusion was reached 

as a direct consequence of the author research. The mapping 

lithological features and the different types of alteration that 

may be found in metallogenic zones. This is done for the aim of 

extracting mineral deposits. 

Principal component images were able to be computed utilizing 

this method as a result of establishing a correlation. This 

allowed for the computation of principal component images. As 

a consequence of this link, one is able, by means of analyzing 

the spectral information of the pixels, to identify whether or not 

those pixels that comprised the minerals of interest had high or 

low digital numbers (DNs). One of the discoveries that they 

made as a result of their investigation into the disparity between 

the lithology and the mineralized zones was this particular one. 

 

Optimum Index Factor (OIF) 

The optical intensity factor (OIF) for Bands 3, 6, and 8 was the 

greatest out of all of the VNIR and SWIR band combinations 

that were investigated for this study. The employment of a 

bigger number of bands led to an improvement in the spectral 

accuracy of the low-correlation bands, notably the thermal 

bands. This improvement was brought about by the expansion 

of the band count. It is necessary to calculate the OIF in order 

to produce high-quality false-color composites (colour 

combinations that have a higher OIF include more data): 

OIF=(∑ Si)/(∑ri)   (1) 

where  

Si - standard deviation, and  

ri - bands correlation.  

It is standard procedure to examine all of the colours in a 

spectrum in order to identify the deceptive colour combinations 

that conceal the most crucial information. 

 

Spectral Angular Mapper (SAM) Algorithm 

A core premise of the spectral angle mapping method is the 

concept that each pixel in an image acquired through remote 

sensing represents a distinct type of ground cover that can be 

placed into exactly one of these classes. This principle is central 

to the concept of spectral angle mapping. The algorithm 

operates under the assumption that this is one of the most 

essential variables. Examining the degree to which the two 

spectra are analogous to one another is one of the ways in which 

one can figure out how effective the SAM approach is.  

The study has the option of using any number of the available 

spectra in order to build a spectral similarity. By calculating the 

angle that separates the spectra, we may be able to get an idea 

of how closely they are related to one another. Seeing the 

spectra as vectors in a space that has the same number of 

dimensions as the number of bands is the key to achieving this 

goal. 

Using the HSI cube algorithm, each pixel vector in an HSI cube 

is assigned a name, and the names are selected by the spectral 

or spatial properties of the cube. The HSI can be formulated 

utilizing the mathematical notation that is as follows: 

X = [x1, x2,. . . , xB]T ∈ ℝB×(N×M) ,  (2) 

where,  

B - total bands.  

Y = fc(X,θ)     (3) 

where,  

fc(.) - mapping function 

θ - adjustable parameter such that  

fc: X → Y                           (4) 

 

Deep Learning 

In order to address the HSI classification problem, which needs 

the utilisation of CNN, 3D kernel is applied to images in order 

to extract spectral and spatial features from them. Utilizing 3D 

convolutional kernels is one way to accomplish the integrated 

feature mapping of input data with spectral and spatial 

dimensions. The formula for 3D convolution is presented in the 

following, 
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where  

(x, y, z) - current position 

i - current operation,  

j - jth feature map,  
xy

ijv
 - output position (x, y, z),  

r - bias term,  
hwb

ijpk
 - connected weight value to jth feature map.  

p - connected features,  

f - activation function,  

Bi, Hi and Wi – kernel size. 

RESULTS AND DISCUSSIONS 

We devised a technique that was predicated on deep metric 

learning in order to circumvent both the curse of dimensionality 

and the dearth of properly labelled training data. This allowed 

us to overcome both challenges simultaneously. Both of these 

issues were investigated using high-dimensional hyperspectral 

images in addition to several other sample sampling 

approaches. The results of these studies are presented below. To 

begin, in order to illustrate the effectiveness of the proposed 

algorithm, we carried out tests on three different open-source 

datasets. These experiments were carried out so that we could 

demonstrate the usefulness of the method. The following is an 

exhaustive overview of the images that were compiled 

following a search for them. Following that, an in-depth 

analysis of the model hyperparameters was carried out as in 

Figure 1-5.  
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Figure 1: Accuracy of the CNN 

 

Figure 2: Precision of the CNN 
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Figure 3: Recall of the CNN 

 

Figure 4: F-Measure of the CNN 
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Figure 5: MAPE 

 

By utilizing an embedded network that was based on CNN, we 

were able to transform a high-dimensional feature space into a 

low-dimensional feature space that was simpler to work with. 

This made it possible for us to better handle the data. However, 

it was discovered that the usage of a CNN-based embedded 

network on its own was insufficient to accomplish the goals that 

were set. The utilization of an online triplet loss proved to be 

useful in either excessive or insufficient overfitting.  

By applying enhanced sampling techniques to make the training 

of the network more targeted, we were able to achieve a greater 

dimensionality reduction effect with a lesser amount of data. 

This was made possible by the fact that we used fewer data.  

This made it possible for us to achieve our goal of generating a 

higher effect with less data while still maintaining the 

advantages that CNN offers in its original form as a potent tool 

for dimensionality reduction. The effectiveness of CNN was 

assessed by employing three distinct categorization metrics on 

three distinct data sets. CNN displayed greater accuracy when 

compared to other possible categorization algorithms. 

CONCLUSIONS 

The deep networks were necessary in order to be successful in 

overcoming the obstacle of categorization when there were just 

a few tagged instances to work with. The improved 

performance of the network in classification tasks can be 

attributed to this ability of deep metrics, which has the 

capability to effectively make the same class more compact 

while simultaneously making the heterogeneous more 

distributed. In addition, the embedded network as a whole can 

be taught by utilizing the most challenging triplets that can be 

formed by the application of an online hard mining technique. 

This can be done by making use of the most difficult triplets. 

Because of this, the method that we showed performed better 

than competing algorithms on three different datasets when it 

came to the categorization of the data. In the process of 

classifying hyperspectral data using cross-entropy loss or other 

algorithms, other approaches differ from the way that we have 

presented in that they ignore the impact of intra-class distance 

in addition to the impact of inter-class distance. It is abundantly 

obvious that our strategy enhances the accuracy of 

classification as a result of the fact that it restricts the distance 

between classes as well as the distance within each class. 
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