SQUARE HARMONIC MEAN LABELING OF SIMPLE GRAPHS

L. S. Bebisha Lenin¹, M. Jaslin Melbha²

¹Research Scholar, Reg. No. 22113282092003, Department of Mathematics,

Women's Christian College, Nagercoil-629001, Tamil Nadu.

²Assistant Professor, Department of Mathematics, Women's Christian

College, Nagercoil-629001, Tamil Nadu.

Affiliated to , IndiaManonmaniam Sundaranar University, Abishekapatti, Tirunelveli-

627012

Email: bebishalenin8497@gmail.com, mjaslinmelbha@gmail.com

ArticleHistory:Received:06.04.2023 Revised:22.05.2023 Accepted:07.07.2023

Abstract:

If there is an injective function $h: V(G) \rightarrow \{1, 2, ..., q + 1\}$ such that an induced edge function $h^*: E(G) \rightarrow \{1, 2, ..., q\}$ defined by $h^*(e = uv) = \left[\frac{2h(u)^2h(v)^2}{h(u)^2 + h(v)^2}\right]$ or $\left|\frac{2h(u)^2h(v)^2}{h(u)^2 + h(v)^2}\right|$ is bijective, then a graph G = (V, E) with p vertices and q edges is called a square harmonic labeling. A graph which admits a square harmonic mean labeling is called a square harmonic mean graph. In this paper we prove that Path, Cycle, Comb, Star Graph, Crown Graph, Ladder Graph, Caterpillar, Olive Tree, Triangular Snake, Quadrilateral Snake and Hexagonal Snake Graph are square harmonic mean labeling of graphs.

Keywords: Graphs, Square harmonic mean graph.

DOI: 10.31838/ecb/2023.12.s3.615

1. Introduction

All graphs considered here are simple, finite, connected and undirected graph. Graph labeling plays an important role in graph theory. The paper written by Leonhard Euler on the seven bridges of Konigsberg and published in 1936 is regarded as the first paper in the history of graph theory. It is used in many applications like coding theory, radio astronomy, X-ray crystallography and circuit design. A graph labelling is an assignment of integers to the vertices, edges or both of a graph with certain conditions. There is an enormous literature dealing with several kinds of labeling of graphs over the past three decades.We cite J. A. Gallian [1] for an extensive examination of graph labeling. We adhere to Harary's [2] conventions for all other terms and notations. Some more results on harmonic mean graphs have been examined by C. Jayasekaran, C. David Raj [3]. S. Somasundaram and R. Ponraj [4] are the ones who proposed the idea of mean labeling. S. Somasundaram, R. Ponraj and S.S. Sandhya [5] established the notion of harmonic mean labeling. The aforementioned

studies served as our inspiration as we introduced square harmonic mean labeling and also investigate square harmonic mean labeling behaviour of some simple graphs.

Definition 1.1. If there is an injective function $h: V(G) \rightarrow \{1, 2, ..., q + 1\}$ such that an induced edge function $h^*: E(G) \rightarrow \{1, 2, ..., q\}$ defined by $h^*(e = uv) = \left[\frac{2h(u)^2h(v)^2}{h(u)^2+h(v)^2}\right]$ or $\left[\frac{2h(u)^2h(v)^2}{h(u)^2+h(v)^2}\right]$ is bijective, then a graph G = (V, E) with p vertices and q edges is called a **square harmonic labeling.** A graph which admits a square harmonic mean labeling is called a **square harmonic mean graph**.

Definition 1.2. Path refers to a walk where each of the vertices $u_0u_1 \dots u_n$ are distinct. A path on n vertices is denoted by P_n .

Definition 1.3. Cycle of G refers to a closed path. The symbol C_n stands for a cycle on n vertices.

Definition 1.4. The graph $G = G_1 \cup G_2$ formed by taking one copy of G_1 and $V(G_1)$ copies of G_2 ,

where the ith vertex of G_1 is next to every vertex in the ith copy of G_2 is known as the **corona** $G_1 \odot G_2$ of two graphs G_1 and G_2 .

Definition 1.5. Combrefers to the graph formed by connecting a single pendant edge to each path vertex.

Definition 1.6. A **Star Graph** is a complete bipartite graph $K_{1,n}$ is a tree with one internal node and n leaves.

Definition 1.7. Any cycle with a pendant edge attached at each vertex is called a **Crown Graph** and it is denoted by $C_n \odot K_1$.

Definition 1.8. The Cartesian product of a path on two vertices and another path on n vertices is called the **Ladder Graph** L_n , which has the form $P_2 \times P_n$.

Definition 1.9. A tree which yields a path when its pendant vertices are removed is called **Caterpillar**.

Definition 1.10. An **Olive tree** O_n is a collection of k paths joined in one of the end vertices, where the nth path has n as its length.

Definition 1.11. A **Triangular Snake** T_n is obtained from a path $u_1, u_2, ..., u_n$ by joining u_{α} and $u_{\alpha+1}$ to a new vertex v_i for $1 \le \alpha \le n-1$. That is every edge of a path is replaced by a triangle C_3 . **Definition 1.12.** A **Quadrilateral Snake** Q_n is a graph obtained from a path $u_1 u_2 ... u_n$ by joining u_{α} and $u_{\alpha+1}$ to two new vertices v_{α} and w_{α} respectively, $1 \le \alpha \le n - 1$ and then joining v_{α} and w_{α} . That is every edge of a path is replaced by a cycle C_4 .

Definition 1.13. Hexagonal Snake Graph H_n has been defined as a connected graph in which all the blocks are isomorphic to the cycle C_6 and the block cut point graph is a path P_n , where P_n is path of minimum length that contains all the cut vertices of a hexagonal scale. That is every edge of path $v_1v_2 \dots v_n$ of size n is replaced by a cycle C_6 and $d(v_iv_{i+1}) = 2$.

2. Main Results

Theorem 2.1. Path P_n admits a square harmonic mean graph.

Proof. Let $G = P_n$ be a path $u_1 u_2 \dots u_n$. Let $V(G) = \{u_{\alpha} : \alpha = 1, 2, ..., n\}$ and E(G) = $\{u_{\alpha}u_{\alpha+1}: \alpha = 1, 2, ..., n-1\}$. Then |V(G)| = nand |E(G)| = n - 1.A function $h: V(G) \rightarrow$ $\{1, 2, \dots, q+1\}$ is defined by $h(u_{\alpha}) = \alpha$, $\alpha = 1, 2, ..., n$. The corresponding induced edge label is $h^*(u_{\alpha}u_{\alpha+1}) = \alpha, \alpha = 1, 2, \dots, n-1$. Thus h^* is bijective. Therefore, P_n admits a square harmonic mean graph.

Illustration 2.2. The image below displays a square harmonic mean labeling of P_6 .

Figure I. P₆

Theorem 2.3. Cycle C_n admits a square harmonic mean graph.

Proof. Let C_n be the cycle of length *n*. Let the cycle be $u_1u_2 \dots u_nu_1$. Let $V(C_n) = \{u_\alpha : \alpha = 1, 2, \dots, n\}$ and $E(C_n) = \{u_\alpha u_{\alpha+1}, u_n u_1 : \alpha = 1, 2, \dots, n-1\}$. Then $|V(C_n)| = n$ and $|E(C_n)| = n$. A function $h: V(C_n) \rightarrow \{1, 2, \dots, q+1\}$ is defined by $h(u_\alpha) = \alpha, \alpha = 1, 2, \dots, n$. Moreover, the

induced edge labels $\operatorname{are} h^*(u_{\alpha}u_{\alpha+1}) = \alpha + 1$, $\alpha = 1, 2, ..., n-1$, $h^*(u_nu_1) = 1$. Thus h^* is bijective. Therefore, C_n admits a square harmonic mean graph

Illustration 2.4. The image below displays asquare harmonic mean labeling of C_6 .

Figure II.C₆

Theorem 2.5. Comb $P_n \odot K_1$ admits a square harmonic mean graph.

Proof. Let us take $P_n = u_1 u_2 \dots u_n$ and join a vertex u_{α} to corresponding pendant vertices v_{α} .Let *G* be comb with $V(G) = \{u_{\alpha}, v_{\alpha} : \alpha = 1, 2, \dots, n\}$ and $E(G) = \{u_{\alpha}v_{\alpha}, u_nv_n, u_{\alpha}u_{\alpha+1} : \alpha = 1, 2, \dots, n-1\}$.Then |V(G)| = 2n and |E(G)| = 2n - 1. A function $h: V(G) \rightarrow \{1, 2, \dots, q+1\}$ is defined by $h(u_{\alpha}) = 2\alpha - 1$,

 $\begin{array}{ll} \alpha=1,2,\ldots,n, & h(v_{\alpha})=2\alpha,\alpha=1,2,\ldots,n. & \text{The} \\ \text{corresponding} & \text{induced} & \text{edge} & \text{labels} \\ \text{are}h^*(u_{\alpha}u_{\alpha+1})=2\alpha,\alpha=1,2,\ldots,n-1, \\ h^*(u_{\alpha}v_{\alpha})=2\alpha-1, \ \alpha=1,2,\ldots,n. & \text{Thus} \quad h^* & \text{is} \end{array}$

 $h^*(u_{\alpha}v_{\alpha}) = 2\alpha - 1, \ \alpha = 1, 2, ..., n.$ Thus h^* is bijective. Therefore, *G* admits a square harmonic mean graph.

Illustration2.6. The image below displays asquare harmonic mean labeling of $P_5 \odot K_1$.

Figure III.P₅ \bigcirc K₁

Theorem 2.7. Star Graph $K_{1,n}$ admits a square harmonic mean graph.

Proof. Let $G = K_{1,n}$ be a star graph.Let $V(G) = \{u, u_{\alpha} : \alpha = 1, 2, ..., n\}$ and $E(G) = \{uu_{\alpha} : \alpha = 1, 2, ..., n\}$. Then |V(G)| = n + 1 and |E(G)| = n edges.A function $h : V(G) \rightarrow \{1, 2, ..., q + 1\}$ is defined by h(u) = 1, $h(u_{\alpha}) = \alpha + 1$, $\alpha = 1$

1,2,...,*n*.The corresponding induced edge label $ish^*(uu_{\alpha}) = \alpha$, $\alpha = 1,2,...,n$. Thus h^* is bijective.Therefore, star graph $K_{1,n}$ admits a square harmonic mean graph.

Illustration 2.8. The image below displays a square harmonic mean labeling of $K_{1,8}$.

Figure IV.K_{1,8}

Theorem 2.9 Crown $C_n \odot K_1$ admits a square harmonic mean graph.

Proof. Let C_n be cycle $u_1u_2 \dots u_nu_1$ and v_α be the pendant vertices adjacent to $u_\alpha, \alpha = 1, 2, \dots, n$. The resultant graph *G* is the crown $C_n \odot K_1$ with $V(G) = \{u_\alpha, v_\alpha : \alpha = 1, 2, \dots, n\}$ and $E(G) = \{u_\alpha u_{\alpha+1}, u_n u_1, u_\alpha v_\alpha, v_n u_n : \alpha = 1, 2, \dots, n-1\}$. Then |V(G)| = 2n and |E(G)| = 2n. A function $h : V(G) \rightarrow \{1, 2, \dots, q+1\}$ is defined by $h(u_\alpha) = 2\alpha, \alpha = 1, 2, \dots, n, \qquad h(v_\alpha) = 2\alpha - 1$,

 $\alpha = 1, 2, ..., n$. The corresponding induced edge labels $\operatorname{are} h^*(u_1 u_2) = 2$, $h^*(u_\alpha u_{\alpha+1}) = 2\alpha + 1$, $\alpha = 2, 3, ..., n - 1$, $h^*(u_n u_1) = 4$, $h^*(v_1 u_1) = 1$, $h^*(v_2 u_2) = 3$, $h^*(v_\alpha u_\alpha) = 2\alpha$, $\alpha = 3, 4, ..., n$. Thus h^* is bijective. Therefore, $C_n \odot K_1$ admits a square harmonic mean graph.

Illustration 2.10. The image below displays a square harmonic mean labeling of $C_6 \odot K_1$.

Figure V.C₆ \odot K₁

Theorem 2.11.Ladder L_n admits a square harmonic mean graph.

Proof. Let L_n be the ladder that joins the two paths $u_1u_2 \dots u_n$ and $v_1v_2 \dots v_n$ respectively.Let $V(L_n) = \{u_{\alpha}, v_{\alpha} : \alpha = 1, \dots, n\}$ and $E(L_n) = \{u_{\alpha}u_{\alpha+1}, v_{\alpha}v_{\alpha+1}, u_{\alpha}v_{\alpha}, u_nv_n : \alpha = 1, \dots, n-1\}$ Then $|V(L_n)| = 2n$ and $|E(L_n)| = 3n-2$. A function $h: V(L_n) \rightarrow \{1, 2, ..., q + 1\}$ is defined by $h(u_{\alpha}) = 3\alpha - 2, \ \alpha = 1, 2, ..., n, h(v_{\alpha}) = 3\alpha - 1, \ \alpha = 1, 2, ..., n.$ The corresponding induced edge labels are $h^*(u_{\alpha}u_{\alpha+1}) = 3\alpha - 1, \alpha = 1, 2, ..., n - 1, h^*(v_{\alpha}v_{\alpha+1}) = 3\alpha, \ \alpha = 1, 2, ..., n - 1,$

 $h^*(u_{\alpha}v_{\alpha}) = 3\alpha - 2, \alpha = 1, 2, ..., n$. Thus h^* is bijective. Therefore, L_n admits a square harmonic mean graph.

Illustration 2.12. The image below displays a square harmonic mean labeling of L_5 .

Theorem 2.13. Caterpillar graph admits a square harmonic mean graph.

Proof. Let G be a graph attained by joining a single edge to the two sides of each vertex of P_n . Let P_n be a path $u_1 u_2 \dots u_n$. Let v_α and w_α be the pendant vertices adjacent to u_α . Let $V(G) = \{u_\alpha, v_\alpha, w_\alpha: 1 \le \alpha \le n\}$ and $E(G) = \{u_\alpha u_{\alpha+1}, u_\alpha v_\alpha, u_n v_n, u_\alpha w_\alpha, u_n w_n: 1 \le \alpha \le n - 1\}$. Then |V(G)| = 3n and |E(G)| = 3n - 1. A function $h: V(G) \rightarrow \{1, 2, \dots, q + 1\}$ is defined by $h(u_\alpha) = 3\alpha - 1$, $\alpha = 1, 2, \dots, n$, $h(v_\alpha) = 3\alpha - 2$,

 $\alpha = 1, 2, ..., n, \quad h(w_{\alpha}) = 3\alpha, \alpha = 1, 2, ..., n.$ The corresponding induced edge labels are $h^*(u_{\alpha}u_{\alpha+1}) = 3\alpha, \alpha = 1, 2, ..., n - 1, h^*(u_{\alpha}v_{\alpha}) = 3\alpha - 2, \alpha = 1, 2, ..., n, \quad h^*(u_{\alpha}w_{\alpha}) = 3\alpha - 1, \alpha = 1, 2, ..., n.$ Thus h^* is bijective. Therefore, caterpillar graph admits a square harmonic mean graph.

Illustration 2.14. The image below displays a square harmonic mean labeling of caterpillar graph for n = 4.

Figure VII.

Theorem 2.15. Olive trees O_n are square harmonic mean graph.

Proof. Let O_n be an olive tree with distinct paths P_α for $\alpha = 1, 2, ..., n$ joined at the end vertex v. The vertex v of degree n is root for O_n . Then O_n has $\frac{n(n+1)}{2} + 1$ vertices and $\frac{n(n+1)}{2}$ edges. A function $h: V(G) \rightarrow \{1, 2, ..., q + 1\}$ is defined by h(w) = 1, $h(v_{11}) = w + 1, h(v_{\beta n}) = \beta + v_{(n-1)(n-1)}, 1 \le \beta \le n,$ $h(v_{\beta(n-1)}) = \beta + v_{(n-2)(n-2)}, 1 \le \beta \le n - 1,$ $h(v_{\beta(n-2)}) = \beta + v_{(n-3)(n-3)}, 1 \le \beta \le n - 2,$ $h(v_{\beta(n-3)}) = \beta + v_{(n-4)(n-4)}, 1 \le \beta \le n - 3,....$ The corresponding induced edge labels are $h^*(wv_{\beta 1}) = \beta, 1 \le \beta \le n$,

 $h^*(v_{\beta(n-2)}v_{\beta(n-1)}) = \beta + (n+4), 5 \le \beta \le n,$ $h^*(v_{\beta(n-3)}v_{\beta(n-2)}) = \beta + (n+3), 4 \le \beta \le$ $n, h^*(v_{\beta(n-4)}v_{\beta(n-3)}) = \beta + (n+1), 3 \le \beta \le n,$ $h^*(v_{\beta(n-5)}v_{\beta(n-4)}) = \beta + n - 2, 2 \le \beta \le n, \dots$ Thus h^* is bijective. Therefore, olive tree O_n admits a square harmonic mean graph.

Remark:

A simple Olive tree K_2 is square harmonic mean graph, since it is a complete graph with two vertices.

Illustration 2.16The image below displays a square harmonic mean labeling of an olive tree O_5 .

Figure VIII. 05

Theorem 2.17. Triangular Snake T_nadmits a square harmonic mean graph.

Proof. Let $u_1u_2 \dots u_n$ be the path of length n and let $v_1v_2 \dots v_n$ be new vertices with joining the path $u_{\alpha}, u_{\alpha+1}$ respectively.Let $V(T_n) = \{u_{\alpha}, v_{\alpha} : \alpha = 1, 2, \dots, n\}$ and $E(T_n) = \{u_{\alpha}u_{\alpha+1}, u_{\alpha}v_{\alpha}, u_{\alpha+1}v_{\alpha} : \alpha = 1, 2, \dots, n-1\}$. Then $|V(T_n)| = 2n - 1$ and $|E(T_n)| = 3n - 3$. A function $h: V(T_n) \rightarrow \{1, 2, \dots, q+1\}$ is defined by $h(u_{\alpha}) = 3\alpha - 2$, $\alpha = 1, 2, \dots, n, h(v_{\alpha}) = 3\alpha - 1$, $\alpha = 1, 2, \dots, n-1$.

The corresponding induced edge labels are $h^*(u_{\alpha}u_{\alpha+1}) = 3\alpha - 1, \alpha = 1, 2, ..., n - 1,$ $h^*(u_{\alpha}v_{\alpha}) = 3\alpha - 2, \alpha = 1, 2, ..., n - 1,$ $h^*(u_{\alpha+1}v_{\alpha}) = 3\alpha, \alpha = 1, 2, ..., n - 1.$ Thus h^* is bijective. Therefore, T_n admits a square harmonic mean graph.

Illustration 2.18. The image below displays a square harmonic mean labeling of T_5 .

Theorem 2.19. Quadrilateral Snake Q_n admits a square harmonic mean graph.

Proof. Q_n is attained by attaching every pair of vertices $u_1 u_2 \dots u_n$ of a path P_n to another two new vertices v_α and w_α respectively. Let $V(Q_n) = \{u_\alpha, u_n, v_\alpha, w_\alpha: \alpha = 1, 2, \dots, n-1\}$ and $E(Q_n) = \{u_\alpha u_{\alpha+1}, u_\alpha v_\alpha, u_{\alpha+1} w_\alpha, v_\alpha w_\alpha: \alpha = 1, 2, \dots, n-1\}$. Then $|V(Q_n)| = 3n - 2$ and $|E(Q_n)| = 4n - 4$. A function $h: V(Q_n) \rightarrow \{1, 2, \dots, q+1\}$ is defined by $h(u_\alpha) = 4\alpha - 3, \alpha = 1, 2, \dots, n, h(v_\alpha) = 4\alpha - 2, \alpha = 1, 2, \dots, n-1$, $h(w_\alpha) = 4\alpha - 1, \alpha = 1$.

1,2,..., n-1. The corresponding induced edge labels $\operatorname{areh}^*(u_{\alpha}u_{\alpha+1}) = 4\alpha - 1, \alpha = 1,2,..., n - 1, h^*(u_{\alpha}v_{\alpha}) = 4\alpha - 3, \alpha = 1,2,..., n - 1, h^*(u_{\alpha+1}w_{\alpha}) = 4\alpha, \alpha = 1,2,..., n - 1, h^*(v_{\alpha}w_{\alpha}) = 4\alpha - 2, \alpha = 1,2,..., n - 1$. Thus h^* is bijective. Therefore, Quadrilateral Snake Q_n admits a square harmonic mean graph.

Illustration 2.20. The image below displays a square harmonic mean labeling of Quadrilateral Snake Q_5 .

Figure X.Q₅

Theorem 2.21. Hexagonal snake HS_n admits a square harmonic mean graph.

Proof. Let HS_n be a hexagonal snake graph. Consider a path $v_1v_2 \dots v_n$ of size *n*. Every edge of a path can be replaced by a cycle C_6 .Then $|V(HS_n)| = 5n + 1$ and $|E(HS_n)| = 6n$.A function $h: V(HS_n) \rightarrow \{1, 2, \dots, q + 1\}$ is defined by $h(u_1) = 1, h(u_\alpha) = 6\alpha - 4, \alpha =$ $2, \dots, n, h(v_1) = 2, h(v_{\alpha+1}) = 6\alpha, \alpha = 1, 2, \dots, n,$ $h(w_\alpha) = 6\alpha - 3, \alpha = 1, 2, \dots, n, h(x_\alpha) = 6\alpha 2, \alpha = 1, 2, \dots, n, h(y_\alpha) = 6\alpha - 1, \alpha = 1, 2, \dots, n.$ The corresponding induced edge labels are $h^*(u_{\alpha}v_{\alpha}) = 6\alpha - 5, \alpha = 1, 2, ..., n$,

 $\begin{aligned} h^*(u_{\alpha}u_{\alpha+1}) &= 6\alpha - 2, \alpha = 1, 2, \dots, n, \ h^*(v_{\alpha}w_{\alpha}) = \\ 6\alpha - 4, \alpha = 1, 2, \dots, n, \quad h^*(x_{\alpha}w_{\alpha}) = 6\alpha - 3, \alpha = \\ 1, 2, \dots, n, \quad h^*(x_{\alpha}y_{\alpha}) = 6\alpha - 1, \alpha = 1, 2, \dots, n, \\ h^*(y_{\alpha}y_{\alpha+1}) &= 6\alpha, \alpha = 1, 2, \dots, n. \quad \text{Thus} \quad h^* \text{ is} \\ \text{bijective.} \quad \text{Therefore,hexagonal} \quad \text{snake} \\ \text{graph}HS_n \text{admits a square harmonic mean graph.} \end{aligned}$

Illustration 2.22. The image below displays a square harmonic mean labeling of HS_4 .

Figure XI.HS₄

3. Conclusion

In this paper we defined Square Harmonic mean labeling concept and showed how to label graphs like Path, Cycle, Comb, Star Graph, Crown Graph, Ladder Graph, Caterpillar, Olive Tree, Triangular Snake, Quadrilateral Snake and Hexagonal Snake Graph. We also provided illustrative examples for possible implementation of square harmonic mean labeling technique. It is possible to probe able results for several other graphs.

4. References

 J.A. Gallian, "A Dynamic Survey of Graph Labeling", The Electronic Journal of Combinatorics, 17# DS6, 2014.

- [2] F. Harary, Graph Theory, Narosa Publishing House, New Delhi, 1988.
- [3] C. Jayasekaran and C. David Raj, "Few Families of Harmonic Mean Graphs", Journal of Combinatorial Mathematics and Combinatorial Computing, Volume 19 (1), (2016), 235-143.
- [4] S. Somasundaram, R. Ponraj, "Mean Labeling of Graphs", National Academy of ScienceLetter, Volume 26, (2003), 210-213.
- [5] S. S. Sandhya, S. Somasundaram and R. Ponraj, "Some Results on Harmonic Mean Graphs", International Journal of Contemporary Mathematical Sciences, Volume 7 (4), (2012), 197-208.