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Common Fixed Point Theorems for Hybrid Pairs of Maps in

Fuzzy Metric-Like Spaces by Distance Adjustment
1. Introduction and Preliminaries

The concept of a fuzzy set, developed by Zadeh
([1] in 1965 to capture the ambiguity in ordinary
life, is the foundation of fuzzy mathematics.
Numerous issues are frequently represented in
mathematical programming as the optimization of
suitable target functions that are outfitted with
particular restrictions that are suggested by some
concrete practical challenge because of its concrete
scenario. There are several real-world issues that
take into account multiple goals, and it is typically
exceedingly challenging to find a workable
solution that can achieve the optimum of all the
goal functions. The usage of fuzzy sets (e.g.,
Turkoglu) provides a workable solution to such
issues. In fact, the variety of applications has
facilitated fuzzy logic’s overall development (e.g.
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[2]). In actuality, the abundance of applications has
facilitated the overall advancement of fuzzy
mathematics. The study of fuzzy metric space has
been done in a variety of methods, just like many
other ideas (see, for example, [3,4]) . In order to
obtain a Hausdorff topology on fuzzy metric
spaces, George and Veeramani [5] modified the
notion of fuzzy metric space first introduced by
Kramosil and Michalek in [6] . This modification
has recently found very successful applications in
quantum particle physics, particularly in string
theory and el theory (e.g. [7] and references cited
therein). In metric and fuzzy metric spaces, various
writers have recently demonstrated fixed and
common fixed point theorems. We provide a few
examples [2,8,9,10,11,12,13,14,15,16,17,18,19,20].
Before presenting our results, we collect relevant
background materials as follows.

Definition 1.1. [21,22] A binary operation =: [0,1] x [0,1] — [0,1] is said to be continuous t-norm if it satisfies

the following conditions:
1. = iscommutative and associative;
2. = iscontinuous;
3. axl=aforallae€](01];

4., axb<cx+dwhenevera<candb <dforalla,b,c,d €[0,1].
For classical examples of continuous t-norm, we recall t-norms T, T, and T,, defined as T;(a,b) =
max(a + b — 1,0), T, (a,b) = ab and T,,,(a, b) = min(a, b) respectively.
A fuzzy metric space in the sense of George and Veeramani [5] is defined as follows:

Definition 1.2 [5] The 3-tuple (X, M,*) is said to be a fuzzy metric space if X is an arbitrary set, * is a
continuous t-norm and M is a fuzzy set on X2 x (0, o) satisfying the following conditions for all x,y,z € X

and t,s > 0:
1. M(x,y,t)>0;
2. M(x,y,t) =1Vt >0iffx =y,
3. M(x,y,t) = M(y,x,t);
4. M(x,z,t+5s)=M(x,y,t)* M(y,z5);
5 M(x,y,.):(0,0) - [0,1] is continuous.

It is worth pointing out that due to (GV-1) and
(GV-2), 0 < M(x,y,t) <1 for all t > 0 provided
x =y, (cf. [23] ). In what follows, fuzzy metric
spaces in the sense of George and Veeramani will
be called GV-fuzzy metric spaces. It is known that,

Remark 1.3. [27] The function M(x,y,t) is often
interpreted as the nearness between x and y with
respect to ¢.

Remark 1.4. [28] For every x,y € X, the mapping
M(x,y,.) is nondecreasing on (0, o).

(FML-1) F(x,y,t) > 0;

for all x,y€X, M(x,y,.) is non decreasing
function. Several examples of fuzzy metric spaces
can be found in George and Veeramani [5], Sapena
[24], Gregori et al. [25] and Roldan et al. [26].

Definition 1.5. [29] The 3-tuple (X, F,*) is a fuzzy
metric like space if X is an arbitrary set * is
continouos norm and F is a fuzzy set in X2 x
(0, ) satisfying the following conditions for all
x,y,z€Xandts > 0:

(FML-2) IfF(x,y,t) =1Vt > 0thenx =y;
(FML-3) F(x,y,t) =F(y,x,t);

(FML-4) F(x,z,t+s)=F(x,y,t)*F(y,z5);
(FML-5) F(x,y,.):(0,00) — [0,1] is continuous.

arwndE

Here F (endowed with =) is called a fuzzy metric like on X.
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While in fuzzy metric-like space, F(x, x,t) may be

Remark 1.6. A fuzzy metric-like space satisfies all less than 1, that is, the concept of fuzzy metric-like
of the conditions of a fuzzy metric space except is applicable when the degree of nearness of x and
that F(x,x,t) may be less than 1 for all t > 0 and v is not perfect for the case x = y.

for some (or may be for all) x € X. Also, every

fuzzy metric space is fuzzy metric-like space with Example 1.7. If X =[0,1], then the triplet
unit self fuzzy distance, that is, with F(x,x,t) =1 (X,F,*;) is a fuzzy metric-like space, where the
forall t > 0 and forall x € X. fuzzy set F is defined by

Note that, the axiom (GV-2) in Definition 1.2 gives
the idea that when x = y the degree of nearness of
x and y is perfect, or simply 1, and then
M(x,x,t) =1 for each x € X and for each t > 0.

1, Ifx=y=0,
F(x,y,t) =4x+ .
.y, 1) Ty, otherwise

forallt > 0.
Using the following propositions, several examples of fuzzy metric-like spaces can be obtained.

Proposition 1.8. [29] Let (X: a_)_ be any metric-like Harandi [30]. Then the triplet (X, F,*p) is a fuzzy
space (for the related definitions we refer to metric-like space, where the fuzzy set F is given by
kt™
F(x,y,t) =

kt™ + mo(x,y)
forallx,ye X, t >0,wherek € R, m>0andn > 1.

Remark 1.9. [29] Proposition 1.8. shows that every metric-like space (X, F,,%,) is called the standard
metric-like space induces a fuzzy metric-like fuzzy metric-like space,
spaces. For k=n=m =1 the induced fuzzy
where

F.(x,y,t) = ——

s (X, y,t) [T o00y)
forallx,y e X, t > 0.
Proposition 1.10. [29] Let (X,0) be any metric- metric-like space, where the fuzzy set F is defined
like space. Then the triplet (X,F,x,) is a fuzzy by

a(x,y)

Flx,y,t) =e "
forallx,y € X, t > 0, wheren > 1.

Example 1.11. Let X = N. Define = by a * b = ab and the fuzzy set F in X2 x (0, %) by

F(x,y,t) = emaxxyi/t

for all x,y € X,t > 0. Then since o(x,y) = max(x,y) for all x,y € X is a fuzzy metric-like on X (see [30] )

therefore by Proposition 1.10 (X, F,*) is a fuzzy metric-like space, but not a fuzzy metric space, as F(x, x,t) =
—_ % 1forallx>0andt> 0.

eXx/t

Example 1.12. ([29])Let X = [0,1]. Define = by a * b = ab and the fuzzy set F in X2 x (0, o) by
X
-3 ifx <y
F(x,y,t) = ¥
= if y<x,

=

forall x,y € X,t > 0. Then (X, F,*) is a fuzzy metric-like space.
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We point out that the Propositions 1.8 and 1.10 are Poposition 1.13. Let (X, o) be the bounded metric-
also hold even if we employ the minimum ¢ —norm like space, that is there exists K > 0 such that
*p, rather than product ¢t —norm =, (see [29]). o(x,y) <K for all x,y€X. Then the triplet

(X,F,*;) is a fuzzy metric-like space, where the
fuzzy set F is defined by

o(x,y)
K+t

F(x,y,t)=1-
forallx,y e X, t > 0.

Proof. The proofs of the properties (FML1)-(FMLJ5) are obvious. For (FML4), let x,y,z € X, t > 0, then since
o(x,y) +0(y,z) = a(x,z), we have
ox,y)+ , )
0@ +o) | o)
K+t K+t

It follows from the above inequality that
xl + ) xl
maxl1 _CEN TG N owz)
K+t K+t

which implies that (FML4) holds.

Definition 1.14. [31] Let CB(X) be the set of all nonempty closed bounded subsets of X. Then for every
A,B,CeCB(X)andt >0,

F(A, B,t) = min{minF(a, B, t), minF (4, b, t)}
where F(C,y,t) = max{F(z,y,t):z € C}.

Remark 1.15. [32] Obviously F(4, B,t) = F(a, B,t) whenever a € A and F(4, B,t) = 1 iff A = B. Obviously,
1=F(A,B,t) <F(a,B,t)forall a € A.

We now discuss the completeness of fuzzy metric-like spaces as well as convergent and Cauchy sequences in
such spaces.

Definition 1.16. [29] Let (X, F,*) be a fuzzy metric-like space and {x,,} be a sequence in X. Then

1. {x,}issaid to be convergentto x € X and x is called a limit of {x, } if forall t > 0,

71i_r)1£)1oF(xn, x,t) = F(x,x,t)
2. {x,}issaid to be Cauchy if, for all t > 0 and each p > 1, the limit limn_mF(x,H_p,xn, t) exists.
3. (X, F,x)is said to be complete if every Cauchy sequence {x,} in X converges to some x € X such that
limy,, o F (2, x,8) = F(x,%,t) = limy, o, F (X4, %5, ) forall t > 0 and eachp > 1.

Remark 1.17. [29] A convergent sequence’s limit does not necessarily have to be unique or a Cauchy sequence
in a space with fuzzy metrics.

Definition 1.18. [34] Let CL(X) be the set of all nonempty closed subsets of a metric space (X,d) and S:Y c
X - CL(X). Then the map f:Y — X is said to be S-weakly commuting at x € X if ffx € Sfx provided that
fxeYforallxey.

Definition 1.19. Two pairs (f,S) and (g, T) of self mappings of a fuzzy metric-like space (X, F,*) are said to
satisfy the common property (E.A) if there exist two sequences {x,,} and {y,} in X such that (¥ t > 0)

lim F(fx,,u,t) = imF(Sx,,u,t) = imF(gy,,u,t) = limF(Ty,,u,t) = 1.

n—-oo n—-oo n—-oo n—-oo
for some u € X.

Definition 1.20. Let f,g: X = X and S, T: X — CB(X) of fuzzy metric-like space (X, M,*). Then the hybrid pair
of mappings (f,S) and (g, T) are said to satisfy the common property (E.A) if there exist two sequences {xn}
and {yn}in X, some u € X and A4, B € CB(X) such that

rlli_{Eonn =4, rlli_{rgoGyn = B, 111L1130fxn = rlli_{gogyn =u€ANB.

for some u € X.

Definition 1.21. [8] Let (X, d) be metric space, f,g: X € X and S, T: X — CL(X). Then the hybrid pair (f,S) is
said to be g-tangential at u € X if there exist two sequences {x,,}, {v,}in X such that lim Ty, € CL(X) and
n—-oo

lim fx, = limgy, =u € A = limSx,.
n—-oo

n—-oo n—-oo
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Remark 1.22. [8] If the hybrid pair of mappings (f,S) and (g, T) satisfies the common property (E.A), then
(f,S) is g-tangential whereas (g, T) is f-tangential but not conversely (in general).

Definition 1.23. [34] Let (X, d) be metric space, if f,g:Y c X € X and S,T:Y — CL(X), then the hybrid pair
(f,S) is said to be g-tangential at u € Y with respect to T if there exist two sequences {x,}, {y,} and A €
CL(X) inY such that lim Ty, € CL(X) and
n—-oo

lim fx, = limgy, =u € A = lim Sx,,.

n—-oo n—-oo n-c
Remark 1.24. [34] The hybrid pairs of mappings (f,S) and (g, T) satisfy the common property (E.A) if and
only if (f,S) is g-tangential with respect to G and (g, S) is f-tangential with respect to S but the converse is not
necessary true. Notice that the common (E.A) property reduces to E.A property (cf. [35]) if we restrict to a
single pair.
Definition 1.25. [34] A map f:Y c X — X is said to be coincidentally idempotent w.r.t. a mapping S:Y —
CL(X) if f is idempotent at the coincidence points of (f,S), i.e., ffx = fx for all x € X with fx c Sx provided
that fx €Y.

2. Implicit Relations
Motivated by Ali and Imdad , we define an implicit function as follows:
Let @ be the set of all functions ¢ (ty, t,,*+, ts): [0,1]° — [0,1], satisfying the following conditions:

1. (¢;1) ¢ isnon increasing in 374, 4", 5th gth;

2. (¢p,) if (u,0,0,u,u,0) =0 or

3. (¢3) ¢(u,0,4,0,0,u) =0,V u € [0,1] impliesu = 0.
The following examples satisfy (¢;), (¢2), and (¢5).
Example 2.1. Define ¢ (ty, t,*+, ts): [0,1]¢ - [0,1] as

P(ty, ty, 0, tg) = t; — amin{t,, ts, t,, ts, tg}, where a > 1.
Example 2.2. Define ¢ (ty, t,*+, ts): [0,1]¢ - [0,1] as
Gty tz,+, te) = t§ — cymin{t3, t3, 15} — comin{tstg, tats},
where ¢;,¢3,c3 >0, ¢ +¢c;>1, ¢ =1
Example 2.3. Define ¢ (ty, t,, **+, ts): [0,1]¢ = [0,1] as
Gty ta,+, te) = t§ — amin{t{ty, tytsty, tite, tsté),
where a > 1.
Example 2.4. Define ¢ (ty, t,**+, ts):[0,1]¢ = [0,1] as
Bty ta, 0, t) =ty — ayty — Ayts — sty — Auls — Aste,

where a,,a,,as,a4,a5 >0, a,+as>1,a3+a, =1 and a; +a, +as > 1.
It is simple to generate a number of additional instances that meet the conditions of the preceding implicit
function.

3. Common fixed points in fuzzy metric-like spaces
Firstly, we rewrite Definition 1.21,1.23 and 1.25.

Definition 3.1. Let (X, F,*) be fuzzy metric-like space, f,g: X € X and S,T: X — CL(X). Then the hybrid pair
(f,S) is said to be g-tangential at u € X if there exist two sequences {x,} and {y,} in X such that lim Ty, €
n—oo

CL(X) and

lim fx, = limgy, =u € A = limSx,.

n—oo n—-oo n—oo
Definition 3.2. Let (X, F,*) be fuzzy metric-like space, if f,g:Y c X € X and S,T:Y — CL(X), then the hybrid
pair (f,S) is said to be g-tangential at u € Y with respect to T if there exist two sequences {x,} and {y,} and
A € CL(X) inY such that lim Ty, € CL(X) and

n—-oo

lim fx, = limgy, =u € A = limSx,.

n—oo n—-oo n—oo
Definition 3.3. Let (X, F,*) be fuzzy metric-like space. A map f:Y c X —» X is said to be coincidentally
idempotent w.r.t. a mapping S:Y — CL(X) if f is idempotent at the coincidence points of (f,S), i.e., ffx = fx
for all x € X with fx € Sx provided that fx € Y .
Remark 3.4. If the hybrid pair of mappings (f,S) and (g, T) satisfy the common property (E.A), then (f,S) is
g-tangential with respect to T whereas (g, T) is f-tangential with respect to S but the converse is not necessarily
true.

Definition 3.5. A function ¢: [0,1] — [0,1] is called an altering distance function if it satisfies the followings;
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1. (a) ¢ is strictly decreasing and continuous;
2. (b) (1) =0ifandonlyifA =1
Now, we prove our main theorem as follows.

Theorem 3.6. Let f,g:Y € X — X be two mappings from a subset Y of a fuzzy metric-like space (X, F,*) into
Xand S, T:Y - CL(X) which satisfy the following conditions:
(¢11) the hybrid pair (f,S) is g-tangential at u € X with respect to T (or the hybrid pair (g, T) is f-
tangential at u € X with respect to S),
(¢,,) there exists ¢ € @ and ¢ is an altering distance function for all x, y € X, such that
P(@(F(Sx, Ty, 1)), 0(F(fx,9y.1)), (F(fx,Sx, 1)), (F(gy, Ty, 1)), (F (fx, Ty, 1)),
9(F(gy,5x,1))) 20,
forall x,y € X.
Then
I the hybrid pair (f, S) have a coincidence point v € Y provided that f(Y) is a closed subset of X;
Il.  the hybrid pair (g, T) have a coincidence point w € Y provided that g(Y) is a closed subset of X;
M. the hybrid pair (f,S) have a common fixed point provided that f is S-weakly commuting at v €
X, ffv=fvandfv ey,
V. the hybrid pair (g,T) have a common fixed point provided that g is T-weakly commuting at w €
Y, ggw =gwand gw €Y,
V. f,g9,S, T have a common fixed point provided that both (I11) and (V) are true.
Since the hybrid pair (f,S) is g-tangential at u € Y with respect to T if there exist two sequences {x,} and {y,,}
inY and A, B € CL(X) such that 711m Ty, = B and

lim fx, = llmgyn =u € A= limSx,.

n—-oo n—oo

Now, we proceed to show that A = B. To do thls con5|der
D@ (F (Sxn, Ty, ), @(F (f ) g¥ns ), @ (F (f Xy Sx, 1)), @(F (gs TYns 1)), @ (F (f X, Ty, 1)),
P(F(gyn Sxn, 1)) 2 0
which on letting n — oo gives rise
¢ ((p(F(A, B,0), o(Fwu, ), o(Fw, A1), ¢(Fu,B,1)),o(Fw B, 1)), p(F(u, A, t)) >0
so that
#(o(F(4,B,1)),0,0,¢(F(4,B,1)),9(F(4,B,t)),0)
> ¢(p(F(4,B,1)),0,0(F(w, A1), 0(Fw, B, 1)), o(Fw,B, b)), o(F(u,At)) = 0.
Owing to (¢,) and (¢,,), we have F(4,B,t) = 1sothat A = B.
To prove (1), let f(Y) is closed, then there exists some wveY such that u=fv.
Now, we show that A = Sv. To accomplish this, consider
P (@(F(Sv, Tyn, 1)), p(F(fv, gyn, ©)), 0(F (fv, 50, )), 0 (F(g¥n, TV, 1)), 9 (F (f 0, Ty, 1)),
P(F(gyn Sv,1))) 2 0
which on letting n — oo gives rise
¢ ((p(F(Sv,A, t)), (p(F(fv, u, t)), (p(F(fv, Sv, t)), (p(F(u,A, t)), go(F(fv, A, t)), <p(F(u, Sv, t))) >0

so that
b ((p(F(Sv, A4,6)),0,0(F(4,5v,1)),0,0,¢(F (4, Sv, t)))

> ¢ (9(F(5v,4,0),0,0(F(,5v,0)),(F (1, 4,)), p(F(, 4,)), 0(F (1, Sv,1)) ) 2 0.
Owing to (¢,) and (¢,5), this gets us F (4, Sv,t) = 1 which implies A = Sv. Then fv € Sv this proves (I). The
proof of (II) is similar to that of (I). In order to prove (I1l1), using the conditions given in (I11), we have ffv =
fv and ffv € Sfv so that u = fu € Su. The proof of (IV) is similar to that of (I1I) while (V) follows
immediately.
In case the hybrid pair (g, T) is f-tangential at u € X with respect to S, a proof on the lines of the proceeding
case can be outlined. This concludes the proof.
A series of multivalued mappings are involved in our following theorem.

Theorem 3.7. Let {S,,}, n € N be a sequence of multi-valued mappings from a subset Y of a fuzzy metric-like
space (X, F,*) into CL(X) and f, g: Y — X which satisfy the following conditions:
a) either the pair (f,Sy) is g-tangential at u, € Y with respect to S; (or the hybrid pair (g,S;) is f-
tangential at u; € Y with respectto S, where k = 2n — 1 and [ = 2n forall n € N);
by US,(Y)cg(¥)anduS,(Y)c f(Y)
c) there exists ¢ € @ and ¢ is an altering distance function for all x, y € X such that
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P (@(F(Six, 51y, 0), o (F(fx, gy, 1), 0 (F (fx, Siex, ©)), 9 (F (g, 519, 0)), 0 (F (fx, Sy, 1)),
o(F(gy,Sex,1))) = 0,
forall x,y € X.
Then
I (f, S,) have a coincidence point u;, € Y;
Il. (g,S;) have a coincidence point u; € Y;
1. (f, Si) have a common fixed point provided that f is S, -weakly commuting at u; and f is coincidentally
idempotent w.r.t. Fy;
V. (f,S;) have a common fixed point provided that f is S;-weakly commuting at u; and g is coincidentally
idempotent w.r.t. F;.
Proof. Since the hybrid pair (f,S;) is g-tangential at u;, € Y with respect to S; if there exist two sequences
{x1n} and {y;,} in Y and A;, B, € CL(X) such that A%Flyk" = B, and
lim fx, = }li_r)lgog)’kn =u € Ax = 111i_)n;5kxkn'

n—-oo

Now, we proceed to show that A, = B,. To do this, consider
¢((p(F(Skxkanl.an' t)), (p(F(kan'gyknv t)), (p(F(kan:Skxkn! t)), fp(F(QYkn, S$1Yins t));
@ (F (f Xiens StViens ©)), @ (F (9Yien» SieXins £))) = 0
which on letting n — oo gives rise
¢(¢(F(Ak' Bk' t))' 0'0' (p(F(uk; Bk; t)); (p(F(uk' Bk; t)): 0) =0
so that
¢((p(F(Akv Bk! t))v 0!0! (p(F(Ak! Bk! t)), QD(F(ARI Bk: t)): 0)
2 ¢ ((p(F(Ak’ Bk’ t))’ 0' (p(F(uk'Ak' t))' (p(F(uk' Bk' t))’ QD(F(ukx Bkl t))l (p(F(ukx Ak; t))) 2 O
Owing to (¢,) and (¢,,), we have F (A, By, t) = 1 so that A, = B;.
As u;, €U S;(Y) and U S;(Y) c f(Y), there exist z;, € Y such that u,, = fz.
Now, we show that F, z, = Aj. As
¢(¢(F(skzk'5lykn: t)): ‘P(F(fzk:QYknv t)), (p(F(ka:Ska: t)): (p(F(gykn:Slyknx t))'

@(F(f 2, S1Yiens ), @ (F (9Yiens Sz 1)) 2 0

which on letting n — oo reduces to
(@ (F(Sizi, A, £)), 0,0, o (F (wy, Ay, 1)), 0 (F (g, Ar, 1)), 0) = 0

so that S, z;, = A; which proves (1).
The remaining parts are easy to prove. This concludes the proof.

Remark 3.8. Theorem 3.8 is a generalization of Theorem 2 in [37].
One can derive the following corollary from Theorem 3.5 involving a hybrid pair of mappings (f, S) satisfying
the property (E.A).
Corollary 3.9. Let (X, F,x) be fuzzy metric-like space. If f:Y c X - X and S:Y — CL(X) be a pair of hybrid
mappings satisfying the following conditions:

a) the pair (f, F) satisfy the property (E.A),

b) ¢ isan altering distance function for all x,y € Y,

o(F(fx,Sy,0)) = min{p(F(fx, fy,0)), o(F(x50,0) + o(F(y Fy,0)

o(F(fx,Fy,t)) + o(F(fy, Sx, t))}
> ,

or
o(F(fx,Sy,0)) = amin{o(F (fx, fy, 1)), o(F (fx,Sx, 1)), o(F(fy, Fy, 1)),
o(F(fx, Fy,0)), (F(fy,Sx,0))},
where ¢ > 1, or
o(F(fx,8y,0)) 2 a,p(F(fx, fy,0) + az0(F (fx,Sx,8)) + azp(F (fy, Fy, t))
+a,p(F(fx,Fy,0)) + aso(F(fy,Sx,t)),

where a4, a,,as,a4,a5 >0, az+a,=>1anda, +a, +as > 1.
If £(Y) is a closed subset of Y , then (f,S) have a common fixed point provided that f is S-weakly commuting
atve Xand ffv = fvforvecC(,S).

Remark. 3.40.

l. Theorem 3.6 is a generalization of Theorem 2.8 in [34];
I. Corollary 3.9 is a generalization of Theorem 3.10 in [8].
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4. An illustrative example
Now, we provide a case study to illustrate the viability of the assumptions and level of generality of our
Theorem 3.4 relative to the vast majority of past findings established thus far with a few probable outliers.

Example 4.1. Let (X, F,*) be a fuzzy metric-like space wherein X = [0,1], a x b = ab for all a, b € [0,1] with
t

F(x,y,t) = t+oty)
where
(2, Ifx=y=0,
o(xy) = {1, otherwise

forallt > 0, x,y € X. Define ¢(t;,t,, -+, ts):[0,1]¢ - [0,1] as
Bty by, t) =t — b
and define the maps S,T,f,g on X as Sx = [23—x1] Tx = [x?,1] and fx =2?x, gx = x? for all x,y € X.

Define two sequences {x, } = {%}, {yn} = {i}, n € Nin X. As,

n—oco

lim fx, = limgy, =0 €
n—oo

[0,1] = lim Sx,,,

n—-oo

the hybrid pair (f,S) is g-tangential at 0 € X with respect to T besides

¢ (@(F(Sx, Ty, 1)), o(F(fx, gy, 0)), o(F (fx,5x,1)), (F (g, Ty, 1)), p(F (fx, Ty, t)), p(F(gy,Sx,t))) = 0.
Thus, all the conditions of Theorem 3.5 are satisfied and 0 remains fixed under all the four involved maps.
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