L(3,1)LABELING AND L'(3,1) LABELING OF MERGE GRAPH($\mathbf{C}_{3} * \mathbf{K}_{1, n}$), SUBDIVISION OF THE EDGES OF THE STAR GRAPH, (K $1, n)$, AND L(3,1) LABELING OF TADPOLE GRAPH T(3,n) AND LILLY GRAPH $\mathbf{I n}_{\mathbf{n}}$

A.S.Shanthi ${ }^{1}$, Fathima Azher ${ }^{2}$

Abstract

$L(3,1)$ labeling is one of a particular model of frequency assignment problem of $L(h, k)$ labeling. A $L(3,1)$ labeling of a graph G is a function f from the vertex set $V(G)$ to the set of positive integers such that for any two vertices u, v if $d(u, v)=1$ then $|f(u)-f(v)| \geq 3$ and if $d(u, v)=2$ then $|f(u)-f(v)| \geq 1$. In $L(3,1)$ labeling, λ is the smallest positive integer which denotes the maximum label used. $L^{\prime}(3,1)$ labeling is an injective $L(3,1)$ labeling and λ^{\prime} denotes the smallest positive integer which denotes the maximum label used in $L^{\prime}(3,1)$ labeling. In this paper, we consider $L(3,1)$ labeling and $L^{\prime}(3,1)$ labeling of Merge $\operatorname{graph}\left(C_{3} * K_{1, n}\right)$, Subdivision of the edges of the star graph $K_{1, n}$, and $L(3,1)$ labeling of Tadpole graph $T(3, n)$ and Lilly graph I_{n}.

Keywords: $L(3,1)$ labeling , $L^{\prime}(3,1)$ labeling. 2010 Mathematics Subject Classification: 05 C 78

[^0]DOI: 10.31838/ecb/2023.12.s3.677

1. Introduction

Graph Labeling is assigning labels to vertices or edges or both under certain conditions. The applications are found in communication networks, astronomy and so on. In wireless communication networks, we observe that the radio frequencies allotted to them are not adequate. The interference by unconstrained transmitters will disturb the communication. Hale.W [5] took up this problem in terms of graph labeling. Griggs
and Robert proposed a variation in channel assignment problem. According to him any two transmitters which are close will receive different channels so as to avoid interference. $L(2,1)$ labeling is a result of this problem introduced by Griggs. J and Yeh. R [3]. L $(3,1)$ labeling was introduced by Sumanto Ghosh and Anita Pal [8] whose definitions are as follows.

Definition 1 ($\mathrm{L}(2,1)$ labeling [3]).
Let $G=(V, E), L(2,1)$ labeling (or distance two labeling) is a function $f: V(G) \rightarrow\{0,1, \ldots k\}$ where k denotes the span of the graph, with the following conditions being satisfied

$$
\begin{aligned}
& |f(x)-f(y)| \geq 2 \text { if } d(x, y)=1 \\
& |f(x)-f(y)| \geq 1 \text { if } d(x, y)=2
\end{aligned}
$$

The largest number in $f(V)$ is the span of f. The λ number of G denoted as $\lambda(G)$ is the minimum span taken over all $L(2,1)$ labeling of G. Zero is taken as the minimum label in $L(2,1)$
labeling.
Definition 2 (L(3,1) labeling [8]).
Let the graph $G=(V, E), L(3,1)$ labeling is a function f that assigns labels for every u, v belonging to the set of positive integers, if $d(u, v)=1$ then $|f(u)-f(v)| \geq 3$ and if $d(u, v)=2$ then $|f(u)-f(v)| \geq 1$. $L(3,1)$ labeling number, $\lambda(G)$ is the smallest number λ with λ as the maximum label such that G has $L(3,1)$ labeling.
Definition 3 ($L^{\prime}(3,1)$ labeling [8]).
$L^{\prime}(3,1)$ labeling is an injective $L(3,1)$ labeling. $L^{\prime}(3,1)$ labeling number $\lambda^{\prime}(G)$ is the smallest number λ^{\prime} with λ^{\prime} as the maximum label such that G has $L^{\prime}(3,1)$ labeling.
Definition 4 (Merge Graph [9]).
A merge graph $G_{1} * G_{2}$ is formed from graphs G_{1} and G_{2} by merging a vertex of G_{1} with a vertex of G_{2}.
Definition 5 (Subdivision of a graph [9]).
A graph obtained from G by a sequence of edge subdivisions is called a subdivision of a graph G.
Definition 6 (Tadpole Graph [4]).
$T(3, n)$ is a Tadpole graph in which any one vertex of cycle C_{3} is attached to the path P_{n}.
Definition 7 (Lilly graph [2]).
$I_{n}, n \geq 2$ is the Lilly graph constructed using two star graphs $2 K_{1, n}, n \geq 2$ and joining two paths $2 P_{n}, n \geq 2$ which share a common vertex i.e

$$
I_{n}=2 P_{n}+2 K_{1, n}
$$

2. Main Results

$L(3,1)$ labeling number and $L^{\prime}(3,1)$ labeling number of Merge graph $\left(C_{3} * K_{1, n}\right)$, Subdivision of the edges of the star graph $K_{1, n}$ and $L(3,1)$ labeling of Tadpole graph $T(3 . n)$ and Lilly graph I_{n} are determined in this section.

Theorem 2.1. $L(3,1)$ labeling and $L^{\prime}(3,1)$ labeling number of the Merge graph $\left(C_{3} * K_{1, n}\right)$ is $\lambda\left(C_{3} * K_{1, n}\right)=\lambda^{\prime}\left(C_{3} * K_{1, n}\right)=n+4$.
Proof. Let the vertices of C_{3} be u_{0}, u_{1}, u_{2} and let the pendant vertices of $K_{1, n}$ be $u_{3}, u_{4}, \ldots u_{n+2}$ such that $\operatorname{deg}\left(u_{0}\right)=n+2$. Also we observe that $\operatorname{diam}(G)=2$. Let u_{0} be labelled as 0 such that u_{1}, u_{2} receive the labels 3,6 respectively and $u_{3}, u_{4}, \ldots u_{n+2}$ are labeled as $4,5, \ldots n+4$ respectively. Suppose u_{0} receives label other than 0 say u_{0} as 1 then u_{1} and u_{2} should be 4 and 7 and $u_{i}{ }^{\prime} s, i=3,4, \ldots$ cannot be 2 or 3 and hence it can take the labels $5,6,8 \ldots n+5$ which is not minimum. Also we observe that the labeling in each of the vertices are distinct.

Figure $1 L(3,1)$ and $L^{\prime}(3,1)$ Labeling of Merge graph $\left(C_{3} * K_{1,5}\right)$
Hence it follows that

$$
\lambda\left(C_{3} * K_{1, n}\right)=\lambda^{\prime}\left(C_{3} * K_{1, n}\right)=n+4
$$

See Figure 1.
Theorem 2.2. $L(3,1)$ labeling number of the subdivision of the edges of the star graph $K_{1, n}$ is

$$
\lambda\left(S\left(K_{1, n}\right)\right)=n+2 \text { for all } n>3
$$

Proof. Let u_{0} be the root vertex of the subdivision of the edges of the star graph $K_{1, n}$. Let $u_{1}, u_{2}, \ldots u_{n}$ be the vertices adjacent to u_{0} and $u_{1}{ }^{\prime}, u_{2}{ }^{\prime}, \ldots u_{n}{ }^{\prime}$ are the pendant vertices adjacent to $u_{1}, u_{2}, \ldots u_{n}$ respectively. If u_{i} receives the label l then u_{0} and $u_{i}{ }^{\prime}$ should receive the label $\leq l-3$ or $\geq l+3$. Without loss of generality let $u_{1}=3$ then $u_{0}=0$ and $u_{1}{ }^{\prime}=6$, since $d\left(u_{1}, u_{2}\right)=2$. Let $u_{2}=4$ and hence $u_{3}, u_{4}, \ldots u_{n}$ receive labels $5,6, \ldots n+2$. Also $u_{i}{ }^{\prime}=1$, $i=2,3, \ldots n$ since it satisfies the condition $\left|f\left(u_{i}\right)-f\left(u_{i}{ }^{\prime}\right)\right| \geq 1$. Therefore $\lambda\left(S\left(K_{1, n}\right)=n+\right.$ 2. See Figure 2.

Remark 1. $\lambda\left(S\left(K_{1, n}\right)\right)=n+3(n=2,3)$ with u_{0} taking the values either 1 or 4 or 5 when $n=2$ and with u_{0} taking the values either 0 or 1 or 5 or 6 when $n=3$

Figure 2: $L(3,1)$ labeling of the subdivision of the edges of the star graph $K_{1,5}$
Theorem 2.3. $L^{\prime}(3,1)$ labeling number of the subdivision of the edges of the star graph is

$$
\lambda^{\prime}\left(S\left(K_{1, n}\right)\right)=2 n \text { for all } n>4
$$

Proof. In view of Theorem 2.2, the vertices $u_{3}{ }^{\prime}, u_{4}{ }^{\prime}, \ldots u_{n}{ }^{\prime}$ should receive different labels. Since u_{3} receives the label $5, u_{3}{ }^{\prime}$ can be labelled with 2 and $u_{4}{ }^{\prime}, u_{5}{ }^{\prime}, \ldots u_{n}{ }^{\prime}$ receive labels $n+$ $4, n+5, \ldots 2 n$. Thus $\lambda^{\prime}\left(S\left(K_{1, n}\right)\right)=2 n\left(u_{0}=0\right)$ for all $n>4$. See Figure 3 .
Remark 2. $\lambda^{\prime}\left(S\left(K_{1, n}\right)\right)=n+3(n=2,3)$ with u_{0} taking the values either 0 or 1 and $\lambda^{\prime}\left(S\left(K_{1,4}\right)\right)=9$ with $u_{0}=0$

Figure $3 L^{\prime}(3,1)$ labeling of the Subdivision of the edges of the star graph $K_{1,5}$
Theorem 2.4. $L(3,1)$ labeling number of the Tadpole graph $T(3, n)$ is

$$
\lambda(T(3, n))=6 .
$$

Proof. Let the vertices of C_{3} be u, v, w such that the path P_{n} is attached with $u=u_{0}$ and the consecutive vertices in P_{n} are labelled as $u_{1}, u_{2}, \ldots u_{n-1}$. The vertices of C_{3} should receive the minimum labels as $l-3, l, l+3$. Let v and w be labelled as 0 and 3 and let u be labelled as 6 , then u_{1} and u_{2} can receive the labels 1 and 4 respectively. Hence $u_{3}, u_{4}, u_{5}, u_{6}, u_{7}, u_{8} \ldots$ receive the labels $0,3,6,0,3,6, \ldots$. Therefore $f: V(G) \rightarrow\{0,1,2, \ldots 6\}$ is defined as $f(v)=0, f(w)=3, f(u)=6, f\left(u_{1}\right)=1, f\left(u_{2}\right)=4$, and for $i \geq 3$

$$
f\left(u_{i}\right)= \begin{cases}0 & i \equiv 0 \bmod 3 \\ 3 & i \equiv 1 \bmod 3 \\ 6 & i \equiv 2 \bmod 3\end{cases}
$$

Thus $\lambda(T(3, n))=6$

Figure $4 L(3,1)$ Labeling of Tadpole graph $T(3,6)$
Theorem 2.5. $L(3,1)$ labeling number of the Lilly graph I_{n} is

$$
\lambda\left(I_{n}\right)=2 n+3, n \geq 4
$$

Proof. Let the path vertices of I_{n} be labeled as $u_{1}, u_{2}, \ldots u_{2 n-1}$ and the upper star with u_{n} as root vertex be labeled as $v_{1}, v_{2}, \ldots v_{n}$ and lower star with u_{n} as root vertex be labeled as $v_{n+1}, v_{n+2}, \ldots v_{2 n}$. Without loss of generality, let u_{n} be labeled as 0 , then $u_{n-1}, u_{n-2}, \ldots u_{1}$ are labeled as $6,3,0,6,3,0 \ldots$ and u_{n+1}, u_{n+2}, \ldots are labeled as $3,6,0,3,6,0 \ldots$. Since $d\left(u_{n}, v_{i}\right)=$ 1 and $d\left(v_{i}, u_{j}\right) \geq 2,(i, j=1,2, \ldots n), v_{1} v_{2}$ can receive labels 4 and 5 . Also $v_{3}, v_{4}, \ldots v_{2 n}$ receive labels $7,8,9,10, \ldots 2 n+4$.
Thus $\lambda\left(I_{n}\right)=2 n+4$ for $(n \geq 4)$

Figure $5 L(3,1)$ Labeling of Lilly graph I_{5}

3. Conclusion

$L(3,1)$ labeling number and $L^{\prime}(3,1)$ labeling number of Merge graph $C_{3} * K_{1, n}$ and Subdivision of the edges of the star graph $K_{1, n}$ has been derived. $L(3,1)$ labeling number of Tadpole graph $T(3, n)$ and Lilly graph I_{n} is derived. For more graphs, work is under investigation.

4. References

1. P.Deb and N.B. Limaye, On Harmonious Labeling of some cycle related graphs, Ars Combina.65, PP 177-197, 2002.
2. A.Edward Samuel, S.Kalaivani, Square Sum Labeling for some Lilly related graphs, International Journal of Advanced Technology and Engineering Exploration, 4, 2017.
3. Griggs,J.R and Yeh R.K, Labeling graphs with a condition at distance two, SIAM J.Disc.Math, 5, 586-595, 1992.
4. J.A Gallian, A Dynamic survey of graph labeling, Electron J.Comb, 17 (2018).
5. Hale W.K, Frequency assignment, Theory and application.Proc.IEEE, $68,1497-1514,1980$.
6. Joseph A.Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, Nineteenth Edition, October 30, 2016.
7. Stanley E.H, Jesintha J.J, Butterfly graphs with shell orders m and $2 m+$ 1 are graceful, Bonfring International Journal of Research in Communication Engineering, 2: 1-5, 2012.
8. Sumonta Ghosh, Anita Pal, L(3,1) Labeling of Some Simple Graphs, Advanced Modeling and

Optimization, Volume 18, Number 2, 243-248, 2016.
9. R.Uma and S.Divya, Cube Difference Labeling of Star Related Graphs, International Journal of Scientific Research in Computer Science Engineering and Information Technology, Volume 2, Issue 5, 2017.
10. Yeh R.K, Labeling Graphs with a Condition at Distance Two, Ph.D. dissertation, Dept. Math, Univ of South Carolina, Columbia, SC, 1990.

[^0]: ${ }^{1}$ Assistant Professor, Department of Mathematics, Stella Maris College, Chennai- 600086, Affiliated to University of Madras, India.
 ${ }^{2}$ Assistant Professor, Department of Mathematics, Justice Basheer Ahmed Sayeed College for Women, Chennai- 600018, Affiliated to University of Madras, India.

