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ABSTRACT  
In this work, a finite element scheme is proposed using a method of Euler-Taylor-Galerkin described in Páez (2016), for a non-linear model which 

describes the behavior of a new chemo-fluidic oscillator (Donea, 1984). This model is expressed by the coupling of an ordinary differential equation 

describing the hydrogel dynamics, the non-linear transport equation and an auxiliary equation determining the flux volume. The numerical 

solution is constructed by taking a semi-discretization in time of the transport equation, employing forward-time Taylor series expansions 

including time derivatives of second order and third order, avoiding instabilities problems. In this semi discrete equation, the spatial variable is 

approximated by the finite element formulation according to Galerkin. Some simulations are carried out taking different initial conditions for the 

concentration of the hydrogel. The numerical results describe the oscillatory behavior of the system as in Donea (1984), where MatLab tools are 

used as black box. 

34B60, 34B07 , 34B05, 34A34 , 34A09 ,35AAX ,36BBX, 3404,20C40,11Y40 , 11Y16 . 
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Introduction
12

 

Self-oscillating systems play an important role in both the natural 

sciences (biology or chemistry) and technology (micro 

electromechanical or electronic systems) because they can be 

coupled to other systems; one of their most important applications 

is the use as a system clock to trigger regular events such as 

circadian rhythm or in electronic systems. 

This work refers to the use of a Taylor-Galerkin method for 

applying finite element to the nonlinear system that controls the 

behavior of the new chemo oscillator-fluidic and determine its 

numerical modeling. The mathematical problem was raised by 

Páez who made a numerical approximation of the transport 

PDE using the well-known Line Method, however, the ODEs 

system provides a very rough approximation of the solution of the 

transport equation. 

                                                           
 

 

First, this is due to the first-order discretization in space and 

secondly because it can propagate abrupt changes or steep fronts, 

which is a well-known computational problem in the numerical 

solution of hyperbolic PDE. 

In order to describe the dynamics of the chemo-fluidic oscillator a 

set of mathematical models was used, which posed a challenge 

due to the complexity of the system, since the oscillator is 

affected by various nonlinearities that come from the 

characteristics of the hydrogel and the bidirectional coupling 

between the chemical and fluidic domains. The hydrogel is 

designed in such a way that an increase in the concentration of 

alcohol reduces its size and vice versa. Therefore, at low 

concentrations of alcohol, the hydrogel valve is closed, while high 

concentrations of alcohol open the valve. A bypass channel is 

connected to the valve inlet, to allow a continuous flow of 

unidirectional fluid near the hydrogel independent of whether the 

hydrogel valve is open or closed. 

Therefore, to facilitate the modeling process, the system was 

divided into the fluidic domain describing the behavior of 
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volumetric flows and system pressures during the operation and 

chemical domain which in turn divided into two parts the 

description of hydrogel dynamics and the modeling of the delay 

line, resulting in a coupled system composed of the one-

dimensional transport PDE, the ODE that models the dynamic 

behavior of the hydrogel and the equation that determines the 

volume in the buffer. 

To perform this work following very closely to what Donea 

did, the equation is semi-discretized of nonlinear transport 

using Taylor's serial expansions at the time of first, second and 

third order to obtain a second order differential equation in the 

space in which we apply Galerkin's variational formulation to use 

the finite element method and obtain the system of linear 

equations that needs the value of the variable that determines the 

size of the hydrogel that is obtained for each instant of time by 

applying the Runge -Kutta 4 method and the buffer volume that is 

found using numerical integration methods. 

Analyzing in more detail its mathematical modeling and the 

numerical solution of this New Chemical-Fluidic Oscillator based 

on intelligent hydrogels was one of the reasons for the realization 

of this work in addition to extending the linear method used by 

Donea [2] for the nonlinear transport equation and providing a 

solution methodology for models of new oscillators involving the 

nonlinear one-dimensional transport equation. 

1. Design of a chemo-fluoscillator 

The new fluid chemo oscillator is based on a negative feedback 

circuit containing a delay line, where negative feedback is 

provided by a hydrogel valve that has the ability to change its size 

depending on the temperature and concentration of the aqueous 

solution that is in direct contact with the hydrogel. In this new 

oscillator the temperature remains constant so the only parameter 

that produces a change in the size of the hydrogel is the 

concentration of alcohol.  

 

Figure 1.  Photography of the manufactured chemo-fluidic oscillator circuit, 

filled with a highly dyed solution for better visibility of the channels. External 

sources of constant flow and pressure are shown schematically. Equivalent 

fluidic circuit. The hydrogel valve is represented by a controlled flow source. 

 

The oscillator is powered by three constant sources. The first is a 

constant flow source  that supplies the system with an alcohol 

concentration solution . A second source provides deionized 

water at a constant pressure  located at Node 1. Water flows 

through a long channel called the damping line and then is mixed 

into Node 2 with the alcohol solution provided by   , and then 

the mixed solution enters the channel of the long fluid that acts as 

a delay line. Using this channel, the solution is transported at a 

rate determined by the flow through the delay line and its 

cross-section. The end of this channel is connected to the inlet of 

the hydrogel valve, whose fluid behavior is controlled by the 

alcohol concentration of the solution. Finally, a bypass channel 

connects to Node 3 to drain the liquid to a conveniently chosen 

constant flow rate  

 

The micro-fluid system will be modeled through Kirchhoff's laws, 

within the framework of network theory for a circuit. This 

approach is used by how small the dimensions of the magnitudes 

that govern the operation of the oscillator within the study of the 

micro fluids since they are in a range of micronano and picoliter, 

therefore, the pressure is considered analogous to the voltage and 

volumetric flow rate to the electric current, as well as the lines of 

delay to the resistors. In this context, the oscillator can be 

described by the fluid network presented in Figure 2. 

 

Figure 2.  Equivalent fluidic circuit. The hydrogel valve is represented by a 

controlled flow source. 

2. Mathematical model of chemical oscillator-

fluidic 

The mathematical problem to be studied was raised by Páez et al. 

in , and consists in finding functions  

such that: 

 

 

 

The data in this problem are the functions , and 

where is the unknown value to be determined from the 

function at the end ; which must also be determined 
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simultaneously, in this problem, the function 

defined by:   

 

 

Where is a known function and is a constant also known  

2.1 Semi - discretization in problem time (2)  

The transport equation is considered  

 

 

If it is denoted by the value of the function  

evaluated on the node , then a schema in finite differences 

very simple to approximate the temporal derivative in would 

be the one obtained by the serial expansion of Taylor, in the first 

order, around the point  : 

 

From here, despising the  you have:  

 

 

which is the well-known forward-time (Euler) scheme. 

If the PDE is now evaluated in  you have for each 

 the ODE:  

 

Now, using the scheme type forward-time the expression  is 

transformed into:  

 

 

 

Here is the value of in which  is determined using 

Ruge -Kutta 4 applied to the initial problem  

Where, in general, is the unknown value at the 

border  for time . For this scheme, the known 

constant is the initial iteration . In the context of the finite 

differences method, the expression  produces an unstable 

numerical scheme by approximation of the spatial derivative term 

using a centered scheme, i.e.  

 

The instability arises because the partial derivative relative to the 

spatial coordinate is evaluated at a time level  earlier than the 

time level  where the term temporal derivative is evaluated. 

Therefore, a stable schema can be obtained if the two 

derived terms s  and  are evaluated at the same time level  

(at least a second order in ). In this order of ideas, Donea 

states that the easiest way to make the evaluation of both 

terms of the expression  at the same time level  is by 

expressing the approximation in difference for the term of 

temporal derivative at the time level . One way to achieve this is 

through a forward-looking Taylor serial expansion over time, 

including second- and third-order derivatives. That is, from the 

expansion  

 

 

The term is cleared and (considering again the 

notation that was introduced for the forward-time scheme) 

depreciating the term  and using discretization over 

time , for the transport  equation can be replaced by the 

following: 

 

 

For each . The second and third derived terms that 

appear in this expression can be determined first by successive 

differentiation of the equation  and then by evaluating over 

time . The calculation for the second derivative is 

illustrated below. On the one hand  

 

 

 

Now, combining and , evaluated in , with the 

equation you have  
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The expression (12) is similar to that proposed by Leveque when 

generating stabilized numerical methods by dictating a diffuse 

term  to the nonlinear transport equation. However, it 

should be noted that the term  in  appears as part of the 

approximation in difference for the partial derivative of C with 

respect to time, evaluated at level n. On the other hand, following 

closely what Donea  suggested the term of the third-order 

partial derivative that appears in Taylor's serial expansion is 

expressed on purpose in a mixed space-time form. This mixed 

form of the derivative will allow the use of type finite elements 

with a simple modification of the usual and consistent mass 

matrix quite similarly as it is done in the context of weighted 

residues of petrov-Galerkin.  

By developing the specified products and grouping the terms we 

have that the problem raised in (11) is semi discretized over time 

and for each  the next problem arises, 

Given ,  find, 

 such that: 

 

 

 

 

 

 

To be able to solve the differential equation of second order posed 

in (15) we need 2 conditions, but the problem only provides us 

with one condition so it was necessary to impose a second 

condition to solve the problem, which we inducted from the 

mathematical model for the problem of transport proper to the 

chemo-fluid oscillator: 

 

 

 

Deduction of the condition in  

 

From the PDE:   

 

semi-discretization of   

 

 

 

That by evaluating her in , we have a Condition of Robin.  

2.2 Taylor Method-Galerkin 

Considering the internal product on the range:  

 

 

 
Applying the definition of the internal product in the spaces 

with border conditions of Dirilecht and Robin, applying the 

integration formula in parts and replacing the functions in a way 

in (18) that we have for the problem: 

 

 

2.3 Finite Element Method  

We will consider a discretization of finite elements as explained 

above, but adapted to the working  interval. In effect the 

partition of this interval corresponds to the longitudinal 

discretization of the delay line channel into length 

elements  for being , the partition represents 

a mesh of points that we will denote by 
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If we write  using the elementary formulation we would 

have: 

 

 

3. Numerical experimentation 

After raising the mathematical part for the model and obtaining 

the system of equations, a program was designed in Matlab for 

the coupled system where several tests were performed with their 

respective numerical adjustments based on the theoretical 

definitions explained in chapters 2 and 3. 

Each experiment details the change in the initial concentration 

which is a unique experimental value for the 

operation of the hydrogel that is not listed as data in Páez and 

has been imposed on it according to the physical model. 

Experiment 1  

Values are taken in the space of  (nodes); 

 

A constant value was taken as a condition 

which in this case is the experimental value with which the 

numerical part worked in the initial study.  

The values of those derived from the concentration found in  

are replaced by forward differences (Euler) for  

 

 

Figure 3. Response of the chemo-fluidic oscillator modeled by the system. 

 

Periodic behavior can be observed in the Hidrogel which is what 

allows the device to function as an oscillator with negative 

feedback resulting from the increase and decrease of the alcohol 

mixture in the hydrogel chamber, but at the beginning of the flow 

of mixture of alcohol and water there is instability in the wave 

fronts that are then regularized as the process of opening and 

closing the valve progresses that because the hydrogel suffers 

deformation greater than the length of the camera. 

 

Figure 4. Response of the chemo-fluidic oscillator modeled by state variables. 
 

Experiment 2 

In this trial, a quadratic profile was taken as an initial condition 

since there is a mixture of water and alcohol in the canal resulting 

from deionized water flows and alcohol, but not reaching the 

minimum concentration level so that the hydrogel reacts and 

begins to compress due to the increase in alcohol, periodic 

behavior occurs, but with less disturbance at the beginning of the 

process allowing a more stable and smooth concentration flow on 

the wave fronts. 
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Figure 5. Response of the chemo-fluidic oscillator modeled by state variables. 
 

 

Figure 6. Response of the chemo-fluidic oscillator modeled by the system. 

 

4. Conclusions and recommendations 

The first observation that can be made is that the method applied 

to the system composed of    equations 

reproduces the dynamics of the original numerical model of Páez 

, with small differences in amplitude and period, but that it is 

able to produce stable periodic signals for a parameter 

configuration without needing any external forging, which means 

that the oscillating behavior is self-excited. 

The second observation is that from a numerical approximation of 

the linear transport equation (constant velocity) based on the 

Euler-Taylor-Galerkin method for discretization over time and the 

Finite Elements Method for discretization in the space posed by 

Donea, by applying the same method with some variations in the 

initial conditions and border equation in the equation of the 

transport of the nonlinear system that is also coupled to a 

nonlinear ordinary differential equation that governs the behavior 

of the hydrogel and another equation that controls the volume of 

the buffert resulting in a complex system of solving, satisfactory 

results were obtained in relation to its oscillation and its periodic 

and dimensioned movement. It is very important to note that this 

numerical model makes it possible to observe that if we change 

the initial value  there will be a variation at the beginning of 

the hydrogel's operation that would be in the stationary regimen, 

but that after this initial regimen, the hydrogel shows an 

oscillating and periodic behavior typical of Páez's initial analysis. 

The third observation is that this numerical analysis applied to the 

chemo-fluidic oscillator analytically contributes to the 

understanding that the valve composed of the hydrogel is 

extremely sensitive to the variation of the parameters, i.e. it has 

the ability to drastically change its volume under small variations 

of special thermodynamic parameters. 

In this research another option could be given to mathematically 

model the domains of the oscillator, in the fluidic domain given 

by the flow network, the transport of concentration through the 

delay line and in the chemical domain given by the behavior of 

the hydrogel and the concentration of alcohol that produce a 

smooth dynamic system in parts.  

It is recommended to use for future studies a mathematical 

refinement method such as the Galerkin-Discontinuous method to 

be able to model in more detail the behavior of the Chemo-fluidic 

Oscillator. 
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