ANTIBACTERIAL ACTIVITY OF METHANOLIC LEAVES EXTRACTS PITHECELLOBIUM DULCE L.

Renzón Daniel Cosme Pecho¹, Dr. Tanmay Ghosh², Damianus manesi³, Dr. Jesus Marino Falcón Roque⁴, Dr Madhushri Das Datta⁵, Dr. Manju lata⁶

Abstract

The present study Methanol extract of Pithecellobium dulce Leaves were prepared using Maceration method. The extracts were evaluated for antibacterial activity against The need for search for new Herbal Drug therapy for Microbial Infections has therefore become a constant, exercise to *Staphylococcus aureus* (Gram +ve) *Escherichia coli* (Gram -ve) *Staphylococcus epidermidis* (Gram +ve) *Bacillus subtilis* (Gram +ve) *Bacillus cereus* (Gram +ve)Disc diffusion method open auspicious antibacterial activity of the extracts prepared in polar solvents methanol Leaves extract was found to be most active against Microbial strains. The antibacterial activity of Pithecellobium dulce L. leaves methanolic leaves extract was found to be effective against all the five tested Bacterial strains. These findings suggest that methanolic leaves extracts of Pithecellobium dulce has potential as effective anti-bacterial agent.

Keywords: Pithecellobium dulce, Methanol, Penicillin G, Zone of Inhibition.

Email:rcosmep@usil.edu.pe,damianus.manesi@idu.ac.id,jesus.falcon@usil.pe,madhushridas@yahoo.co.in,dhanju5@yahoo.com

¹Chemical engineering, Saint Ignatius of Loyola University, La Molina 1524, Lima, Peru

²Assistant Professor, University of Calcutta, Department of Microbiology, Dinabandhu Andrews College, Baishnabghata, South 24 Parganas, Kolkata–700084, West Bengal, India.

³Indonesian Defense University, Indonesia

⁴Environmental Engineering, Universidad San Ignacio de Loyola, La Molina 1524, Lima, Peru

⁵Department of Botany, Hiralal Mazumdar Memorial College for Women Dakshineshwar

⁶Associate Professor, Department of Zoology, M.S.J Government College, Bharatpur, Rajasthan.

Introduction

The use of plant products with therapeutic properties to cure and prevent diseases is as ancient as human civilization and is the sources of bio-active compounds for drug development by pharmaceutical companies and also only option for treatment in rural communities. According to the World Health Organization, about 80 % of the people in developing countries rely primarily on medicinal plants for their primary health care. Pithecellobium dulce, a medicinal plant cultivated throughout India is a species of Fabaceae family. The plant reaches a height of about 10-15 m with spiny trunk, bipinnate leaves and greenish-white sessile flowers. The plant is inherent of humid America and in India it is known as 'vilayati babul' in Hindi telugu thuma. In India the plant is also generally called "Madras Thorn or Jungle Jalebi". The plant has outmoded medicinal importance as its bark has been used for the treatment of dysentery and febrifuge. In addition, bark of this plant holds anti-venomous activity and is useful against dermatitis and eye besides. tenderness The leaves Pithecellobium dulce have been used as folk medicine for the treatment of tooth ache, leprosy, peptic ulcer, ear ache and as antidiabetic. It is testified that roots of Pithecellobium dulce possess estrogenic activity and the fruits exhibit anti-inflammatory activity. While employed on the synthesis and adjustment of bioactive molecules for the development of drug candidates we thought that investigation of Pithecellobium dulce root extract may offer potent antibacterial agent. The present study was aimed to investigate antibacterial potential of Pithecellobium dulce Leaves extract against Five Gram positive and Gram negative bacterial strains. The results extracts revealed root that polar Pithecellobium dulce have promising antibacterial potential. (Jurenka JS et al 2009)

Materials and Methods

Collection of Plant Materials

The Leaves of *Pithecellobium dulce L*.in the month of April at coastal region of Andhra Pradesh. I collected materials are washed and dried in shade. The dried materials are powdered by used a mixer. The course powdered drug materials subjected to solvent extraction by maceration processing. (Gupta SC et al 2013)

Identification and Authentication of Plants Materials

The Leaves of Pithecellobium dulce L. identified and authentified by Mr.M.Raju, Department of Botany, Acharya Nagarjuna University, Guntur and the specimens Regd. No's 1469 was preserved in herbarium for further identification.

Herbal Drug Extraction by Maceration Method

Weigh the 300gr of dried Leaves of Pithecellobium dulce L materials was ground into course powder and macerated separately with 500ml of Methanol for six days at 35°c. The respective Plants extracts collected subjected to dryness by Rotavaporapparatus under reduced pressure at a temperature of 40°C. Afterwards, each plant part was concentrated to dryness afford three samples (MEPD) the dried Herbal Extracts are preserved in desiccator for further subjected to Experimental Pharmacological invitro and Invivo studies.(Marchiani Aet al 2013)

Qualitative Phytochemical Analysis

The Qualitative Phytochemical Analysis of dried Methanolic extracts and organic solvents (toluene, ethyl acetate & n-butanol) fractions of F1 to F32 were screened for the presence of alkaloids, tannins, terpenoids, glycosides, flavonoids, saponins, anthraquinones and steroids. Chemical tests were carried out using standard procedures to identify the active constituents of Methanolic extracts and Isolated Fractions. (Aggarwal BB et al 2013)

Invitro Studies

Free Radical Scavenging Activity of *Pithecellobium dulce L*.

Preparation of DPPH Stock Solution: DPPH 3 mg was dissolved in 100ml to form 0.1 mM solution.

Preparation of test Solutions: weigh the Methanolic extract 1mg and dissolved in 100 ml of distilled water was prepared.

Preparation Standard Solutions: 10 mg/ml of Ascorbic acid was weighed separately and dissolved in 0.95 ml of DMSO to get 10.5 mg/ml concentrations. This solution was serially diluted with DMSO to get lower concentrations.

Procedure: The DPPH scavenging activity was done using the method. Atotal 3 μ L of 0.1 mM DPPH solution was added to 10 μ L of Methanolic Extracts MEPD and standard (Ascorbic acid) of different test concentrations

(100 to 600 µgr/ml) and allowed to react at room temperature. After 30 min, the absorbance values were measured at 517nm and converted into the percentage antioxidant activity using the following equation. Test solution (10 µl) was used as a blank, while DPPH solution plus methanol was used as a negative control. The positive controls were DPPH solution plus each ml of standard (Ascorbic acid). The IC50values were calculated by linear regression of plot, the Methanolic extracts of MEPD represents Percentage of scavenging capacity. Each experiment was carried out and IC50 value (µg/mL) of the Methanolic extracts were reported. (Neelofar K et al 2011)

Calculation

The percentage of antioxidant activity of Methanolic extracts of MEPD was calculated using the following formula.

Percentage of DPPH scavenging = absorbance of blank-absorbance of test X 100

absorbance of blank

Table 1: Selected Bacterial Strains for Treatment of MEPD

Gram	Stating	Method
------	---------	--------

Procedure

Take a clean, grease free slide. Prepare the smear of suspension on the clean slide with a loopful of sample. Air dry and heat fix Crystal Violet was poured and kept for about 30 seconds to 1 minutes and rinse with water. Flood the gram's iodine for 1 minute and wash with water. Then, wash with 95% alcohol or acetone for about 10-20 seconds and rinse with water. Add safranin for about 1 minute and wash with water. Air dry, Blot dry and Observe under Microscope.

Invitro Anti-Microbial Activity of Methanol Extract of Pithecellobium dulce L

Selected Microorganisms In the present study, the following four Gram-positive and one Gram-negative bacteria were selected.

S.No	Gram Stain	Microorganism strains	Type	Causes
01.	Gram (+ve)	Staphylococcus aureus	ATCC 25923	Wound infection, Pneumonia
02.	Gram(-ve)	Escherichia coli	ATCC 45866	Bloody Diarrhoea, Urinary
02.	Grani(-vc)	Escherichia coli		Tract Infections.
03.	Gram (+ve)	Staphylococcus epidermidis	ATCC 25688	Infection of prosthetic
03.	Grain (+ve)	Siaphytococcus epidermiais		medical device
04.	Gram (+ve)	Bacillus subtilis	ATCC 45878	Food Poisoning
05.	Gram (+va)	Bacillus cereus	ATCC 11778	Food Poisoning, Vomiting,
03.	Gram (+ve)			Diarrhoea,

The above bacterial strains used in this study. All the bacterial strains were grown and maintained on nutrient agar slants. The inoculum size of each test strain was 108 bacteria/ml for disc diffusion assay which was standardized by adjusting the optical density of the bacterial suspension to a turbidity corresponding to spectrophotometric

Absorbance = 0.08 (OD₆₂₀ = 0.08) at 620 nm.

Preparation of Test Sample

Weigh accurately 100 to 1000 mg of Methanolic Extract and dissolved in 100 ml of distilled water and pipetting out 10 mg/mL.

Preparation Standard sample

Weigh accurately 100 to 1000 mg of Penicillin G and dissolved in 100 ml of distilled water and pipetting out 10 mg/mL.

Inoculum preparation

A fresh microbial suspension was prepared by sub culturing the bacterial colonies in to the nutrient broth medium (Hi Media pH 7.4) and incubated at 37°C in order to maintain the uniform growth rate of each organism. The bacterial suspension of approximately 1x108 CFU/ml, which is equivalent 0.5 Me Farland turbidity standard to density (Perilla et al., 2003) was used throughout the experimentation.

Inoculum preparation

A fresh microbial suspension was prepared by sub culturing the bacterial colonies in to the nutrient broth medium (Hi Media pH 7.4) and incubated at 37°C in order to maintain the uniform growth rate of each organism. The bacterial suspension of approximately 1x108 CFU/ml, which is equivalent 0.5 Me Farland turbidity standard to density (Perilla et al., 2003) was used throughout the experimentation.

Procedure for Liquid Agar Media

Be sure to accurately weigh the chemical components of the broth that contains nutrients and place them in the beaker that holds 500ml distillate water. Begin to heat the contents gently by stirring lightly to dislodge the ingredients. You can add more distillation water to increase 1 litre of volume. Determine the your broth's pH using a pH meter. Then, alter your pH until 7.0 with the addition of drops either NaH or HC1 solution. Place the basket in the pressure cooker/autoclave and sterilize at 121°C for 30 mins Once the temperature is cool, you can get the broth tubes out. Use the broth tube as is required, or store it at room temperature to allow for later use. (Liang G et al 2008)

Results

Table 2: Percentage yield and Physical characteristics of Methanolic Extract.

Plant Name	Plant part	Solvent	Percentag e Yield (gr)	Colou r
Pithecellobiu	Leave	Methano	30	Light
m dulce L	S	1		Green

Qualitative Phytochemical Analysis of MEPD.

Preliminary phytochemical investigation of MEPD showed the presence of alkaloids, Flavonoids, Glycosides, Carbohydrates,

Phytosterols, Phenolics and Tannins, Saponins, Proteins & Amino Acids, Fixed oils & Fats, Volatile Oils, Gums.

Table 3: Preliminary Phytochemical analysis of Methanol Extracts of MEPD.

S. No	Chemical	MEPD
	Constituents	
01.	Alkaloids	+
02.	Flavonoids	+
03.	Glycosides	+
04.	Carbohydrates	+
05.	Phytosterols	
06.	Phenolics and	+
	Tannins	
	Saponins	
08.	Proteins & Amino	+
	Acids	
09.	Fixed oils & Fats	
10.	Volatile Oils	
11.	Test for Gums	+

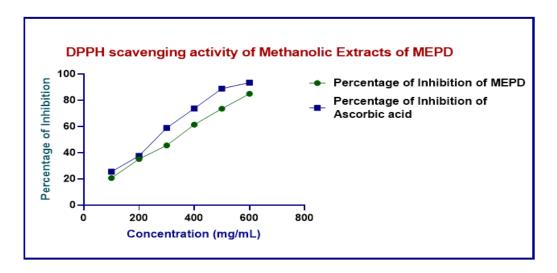
Experimental Pharmacological Invitro Studies

Antioxidant Effects of Methanolic Extracts of MEPD by DPPH Assay

The capabilities of Methanolic extracts of Leaves of *Pithecellobium dulce L*to scavenge DPPH were measured *in-vitro* the Percentage of scavenging activity was showed in the mentioned in below Table No.04

Table 4: DPPH scavenging activity of Methanolic Extracts of MEPD.

Samples	Conc. (µg/ml	Absorbanc e	Percentage of Inhibition	IC50 (μg/ml)
	100	0.530	20.53±0.21	
	200	0.433	35.08±0.23	
MEPD	300	0.364	45.42±0.25	95
МЕРО	400	0.258	61.31±0.66	95
	500	0.177	73.46±0.46	
	600	0.101	84.85±0.11	
Ascorbic acid	100	0.529	25.36±0.36	
	200	0.417	37.48±0.65	
	300	0.275	58.77±0.24	96
	400	0.175	73.62±0.44	86
	500	0.077	88.76±0.24	
	600	0.044	93.40±0.28	


All values are mean \pm S.D. (n=10). p < 0.05 all groups are compared with control group (One-

Values represent mean± SEM (n-6).

way ANOVA followed by Dunnett's multiple

comparison test)

Figure 1: DPPH Scavenging activity of Methanolic Leaves Extract of MEPD

Invitro Studies of Antimicrobial Activity

Table 5: Invitro Antibacterial activity of S. aureus, E.coli & S. epidermidis

Dose	Zone of Inhibition (mm)					
Concentration	S. aureus		E.coli		S. epidermidis	
(µg/mL)	MEPD	Penicillin G	MEPD	Penicillin G	MEPD	Penicillin G
0.1		1.5	2	4	1	2
0.2	1	2	4	5	2	4
0.3	3	4	6	7	4	5
0.4	4	6	8	10	6	7
0.5	5	7	10	12	8	9
0.6	7	9	12	15	10	12
0.7	9	11	14	15	11	14
0.8	10	12	14	16	13	15
0.9	12	13	15	17	15	16
1	13	14	16	18	15	17

Values represent mean± SEM (n-6).

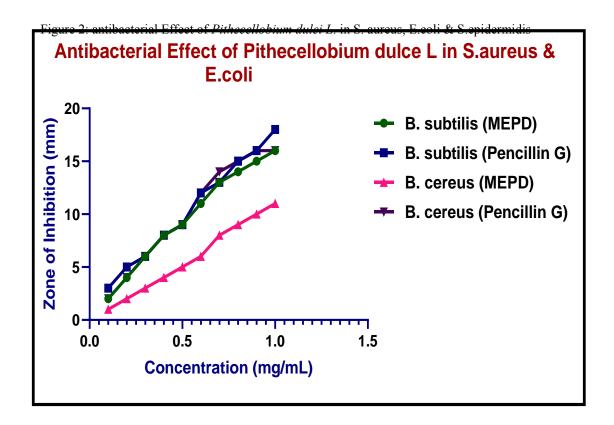

All values are mean \pm S.D. (n=10). p < 0.05 all groups are compared with control group (Oneway ANOVA followed by Dunnett's multiple comparison test)

Table 6|: Invitro Antibacterial activity of MEPD on *B. subtilis & B. cereus*

Dose	Zone of Inhibition (mm)				
Concentr	B. subtilis		B. cereus		
ation	MEPD	Penicilli	MEPD	Penicilli	
(μg/mL)		n G		n G	
0.1	2	3	1	2	
0.2	4	5	2	4	

0.3	6	6	3	6
0.4	8	8	4	8
0.5	9	9	5	9
0.6	11	12	6	12
0.7	13	13	8	14
0.8	14	15	9	15
0.9	15	16	10	16
1	16	18	11	16

Values represent mean \pm SEM (n-6). All values are mean \pm S.D. (n=10). p < 0.05 all groups are compared with control group (Oneway ANOVA followed by Dunnett's multiple comparison test)

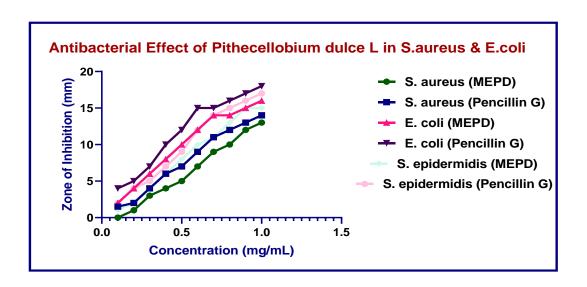


Figure 3: Antibacterial Effect of *Pithecellobium dulci L*. in B. subtilis & B. cereus.

Conclusion

In summary, the methanol Leaves extract of Pithecellobium dulce L. were found to possess Potent antibacterial activity against Gram positive and Gram negative bacterial strains. Therefore, the extract can be processed further for phytochemical investigation to isolate,

characterize and screen the constituents present for antibacterial potential. It is possible that the isolated constituents may exhibit better antibacterial activity compared to the extract.

Bibliography

- Jurenka JS. Anti-inflammatory properties of curcumin, a major constituent of *Curcuma longa*: A review of preclinical and clinical research. *Alter Med Rev.* 2009;14(2): 141–153. [PubMed] [Google Scholar]
- Gupta SC, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: lessons learned from clinical trials. *AAPS J.* 2013:15(1): 195–218. 10.1208/s12248-013-9533-z [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Marchiani A, Rozzo C, Fadda A, Delogu G, Ruzza P. Curcumin and curcumin-like molecules: from spice to drugs. *Curr Med Chem.* 2013;21: 204–222. [PubMed] [Google Scholar]
- Gupta SC, Patchva S, Koh W, Aggarwal BB. Discovery of curcumin, a component of golden spice, and its miraculous biological activities. *Clin Exp Pharmacol Physiol*. 2012;39(3): 283–299. 10.1111/j.1440-1681.2011.05648.x [PMC free article] [PubMed] [CrossRef] [Google Scholar]
- Aggarwal BB, Gupta SC, Sung B. Curcumin: an orally bioavailable blocker of TNF and other pro-inflammatory biomarkers. *Br J Pharmacol*. 2013;169 (8): 1672–1692. 10.1111/bph.12131 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

- Neelofar K, Shreaz S, Rimple B, Muralidhar S, Nikhat M, Khan LA. Curcumin as a promising anticandidal of clinical interest. *Can J Microbiol*. 2011;57(3): 204–210. 10.1139/W10-117 [PubMed] [CrossRef] [Google Scholar]
- Liang G, Yang S, Jiang L, Zhao Y, Shao L, Xiao J, et al. Synthesis and anti-bacterial properties of mono-carbonyl analogues of curcumin. *Chem Pharma Bull*. 2008;56(2): 162–167. [PubMed] [Google Scholar]
- Lüer S, Troller R, Aebi C. Antibacterial and anti-inflammatory kinetics of curcumin as a potential anti-mucositis agent in cancer patients. *Nutr Cancer*. 2012;64(7): 975–981. 10.1080/01635581.2012.713161 [PubMed] [CrossRef] [Google Scholar]
- Song J, Choi B, Jin EJ, Yoon Y, Choi KH. Curcumin suppresses *Streptococcus mutans* adherence to human tooth surfaces and extracellular matrix proteins. *Eur J Clin Microbiol Infect Dis*. 2012;31(7): 1347–1352. 10.1007/s10096-011-1448-y [PubMed] [CrossRef] [Google Scholar]
- Betts WJ, Wareham DW. *In Vitro* activity of curcumin in combination with epigallocatechingallate (EGCG) versus multidrug-resistant *Acinetobacter baumanni*. *BMC Microbiol*. 2014;14: 172 10.1186/1471-2180-14-172 [PMC free article] [PubMed] [CrossRef] [Google Scholar]