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ABSTRACT 

Tumors in liver have become a disease of major concern in recent times. Detection of the tumor and finding whether 

it is cancerous or non-cancerous is a crucial task for diagnosis of liver tumor as there is no established framework 

for evalution of medical imaging segmentation till now. Segmentation techniques can help in detecting these and 

also separating the region of interest from the rest of the neighbouring tissues of same intensity. This paper presents 

a method for detecting tumors in liver and separating the liver organ from its neighboring organs using Marker 

Controlled watershed segmentation. It also presents a classification model to categorize the tissues into tumored 

and untumored cells. This technique could correctly detect and classify the tumor tissues in liver in the patients’ 

computed tomography images. The accuracy of the classification model is satisfactory and the estimated sensitivity 

and specificity correctly validates the segmentation and the classification model used for this research. 
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INTRODUCTION

Hepatocellular carcinoma (HCC) is a primary liver cancer disease in recent times. It has been found that most of the 
liver tumors gets transformed to secondary tumors in due course of time. Hence clinical applications like detection 
of the tumor tissues, separating the tumor tissues from the healthy tissues, planning for its treatment and its frequent 
monitoring  requires  accurate  segmentation  of  liver  and  liver  tumors.  Hence,  a  computer-aided  detection  (CAD)

system with high accuracy level in segmentation methods for tumors would be an effective approach to treatment of 
liver cancer.  The main goal of this paper is to propose an effective segmentation technique for tumor detection.

It  has  been  found  that  Computed  Tomography  (CT)  images  provide  high  resolutions  with  proper  anatomical 
information. But a normal CT image has the possibility of high level of noise in it. The noise in CT images can be 
discarded  with  the help  of  preprocessing  step.  Preprocessing  discards  the  unwanted noise  elements  from the input 
image.

Liver  tumors normally  have  a high  variability  in their appearance  as  the  size and  the  structure  of  the  tumors  vary 
largely  and these  tumors may  appear practically  anywhere within the  liver  with ill-defined  edges.  Therefore,  their 
localization also varies a lot. Moreover, the liver and tumor tissues need to be separated from the neighboring organ 
tissues like spleen, stomach and heart which have similar intensities and fuzzy boundaries.

The tumors in liver sometimes appear darker as compared to the neighboring healthy liver tissues. This is termed as 
hypodense tumors. While in case of hyperdense tumors, the tumor appears brighter. The images captured vary from 
one  patient  to  another  and  also  vary  on  the  type  of  the  lesions,  the  state  of  the  tumor  tissues  and  the  equipment, 
timing of capturing, settings of the camera and the contrast method used for performing the scan.

Segmentation identifies and separates the liver tissues from the tumor tissues in the liver. It also provides details of 
the exact localization of the tumors in the organ and extracts the region of interest by removing the portions which 
are not required to be analyzed for treatment planning and monitoring. Some treatment planning procedures for liver 
tumors are mentioned in papers [23],[24], [25] and [26]. In Selective Internal Radiation Therapy (SIRT) treatment, 
the medicinal dosage to be given to a patient is found by analyzing the volumetric capacity of the tumor tissues. The 
volume of cancerous tissues inside the organ can be calculated by segmentation technique as it segments the tumor 
tissues from the neighboring healthy tissues and computes its volume. Tumors with small size are difficult to detect 
using  segmentation  method.  The  tumor  size  in  a  liver  organ  is  measured  by  calculating  the  maximum  axis  of  the 
tumor  in  the  computed  tomography  images.  According  to  RECIST  standard  [3],  first  the  maximum  axis  of  the 
tumors  needs  to  be  calculated.  Thereafter  only  those  tumors  that  have  an  axis  of  greater  than  10  mm  should  be 
considered  as  the  tumors,  while  the  rest  of  the  tumors  should  be  ignored.  When  treatment  starts  for  a  particular
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patient, the maximum axis is computed for the tumors at regular intervals to check for an increase or decrease in the 

length. If the axis length of the tumor in the liver is decreased by 30% or more, it is considered that the patient has 

partially responded to the treatment. However, if there is an increase of 20 % or more in the tumor axis length, it is 

considered that the patient has a progressive tumor. Segmentation of the tumor tissues is an efficient way to detect 

the tumors and extract important information about it. Segmentation techniques are many and not a single technique 

alone would effectively segment the tumor tissues. Moreover, the segmentation technique should be suitable for the 

medical CT images. This method should recognize or identify the object of interest from its neighboring organs with 

similar intensity and then segment the image to extract meaningful information. 

LITERATURE REVIEW 

Many semi-automatic and automatic techniques have been proposed by researchers since many years to improve the 

effectiveness of liver tumor segmentation. These techniques are based on techniques mentioned in research papers 

[6–19]. Techniques based on region growing, thresholding and clustering are easy to implement and has low 

computational cost but considers only the intensity of the liver tumor thus resulting in blurred tumor boundaries. 

However, this can be overcome by implementing algorithms to preserve the edges. Another important thing to focus 

is the intensity of spleen, stomach and heart and their boundaries with the liver which is fuzzy. Hence, we need to 

focus more separating these from the liver during the segmentation process. The watershed transform segmentation 

can the nearby organs and locate the region of interest. But in doing so the low contrast boundaries are not properly 

detected and also oversegmentation is an issue. This technique is also sensitive to noise. 

Here comes the utility of marker controlled watershed technique which uses a marker function. This marker function 

helps to determine the possible number of ROI and its possible localization previously.[31] Thus the pitfall of 

watershed transform is overcome. Few of the comparative analysis of marker controlled watershed transform with 

other segmentation techniques is described below in table 1. 

Table 1: Analysis of Marker Controlled Watershed Technique with other segmentation approaches 

References Segmenation technique Performance 

Stawiaski et al. 

[32] 

Watershed and graph cut Segmentation time of watershed transform is 

negligible. Graph cut technique consumed lot of time 

Ng H et al. [33] Watershed transform 

algorithm 

Accuracy-92.2% is achieved with region merging 

based on texture. 

Prasad et al. [34] Marker Controlled 

Watershed Segmentation 
and Thresholding approach 

Accuracy of Marker Controlled Watershed-

(85.165%), Accuracy of Thresholding-(81.835%). 
Segmented image quality was found to be much 

better. 

Rahman et al. [35] Marker controlled 

watershed transform and K-

Means clustering technique 

Marker controlled watershed detected tumor cells in 

lungs with better segmentation results. 

Kanitkar et al. 

[36] 

Thresholding and Marker 

controlled watershed 

transform 

Accuracy of Marker controlled watershed transform-

100%. Detection of cancerous and non-cancerous 

tumors in lungs was done and also the tumor stage 

was detected accurately. 

V. Grau et al. [37] Watershed Transform Computation cost is less.Reduces the post processing 

effort. 

C Wei-bin and W 

Zhejiang [38] 

Watershed Transform Accuracy level is satisfactory. 

A kaur and A 

Verma [39] 

Marker Controlled 

Watershed 

Accuracy level is better than watershed transform. 

Many of the techniques described in table 1 cited the problem of marking region optimization in case of marker 

controlled watershed technique. The solution to this problem is mentioned in this paper by preprocessing the input 

image using median filter and then applying the segmentation algorithm on the filtered image. 

MATERIALS AND METHODS 

Image processing techniques are used in this research and implemented in MATLAB R2019a and python. Median 

filter is applied as a preprocessing step to remove unwanted noise from the image and marker controlled watershed 

transform is used for segmentation. It has been found that the performance is enhanced by this combination. The 

dataset used for this research is publicly available liver tumor clinical dataset 3Dircadb from Research Institute 

against Digestive Cancer (Ircad 2016) so that real time data would be used to evaluate the proposed model. The 

patient tumor image is captured at different enhancement phases. 

PROPOSED METHODOLOGY 

In the first phase of preprocessing, Median filter is applied on CT images. Filtering the image using median filter 

will reduce distortion and noisy elements present in the image and will also preserve the edges of the image. 

Volume Based Segmentation and Classification of Liver Tumor Using Marker
Controlled Watershed Transform

European Chemical Bulletin
ISSN 2063-5346

European Chemical Bulletin 2022, Volume 11 (Regular Issue 6), Page: 806-812 807



Thereafter segmentation algorithm is implemented to the preprocessed image to detect and segment the region of 

tumor from the liver organ as explained below. 

I. Marker Controlled Watershed Transform: 

The simulated flow of Marker controlled watershed transform algorithm for liver tumor detection is as follows.  

1. Determine the marker function for localizing the ROI using gradient magnitude. 

2. Calculate the foreground marker function. 

3. Calculate the background marker function. 

4. The marker function is then formulated. 

5. Calculate the watershed transform by applying it on modified marker function. 

II. Support Vector Machine Classifier: 

The Support Vector Machine (SVM) uses a multi class learning technique to categorize the tumor tissues into 

different classes. SVM is considered most suitable and efficient classifier with high dimensionality feature spaces. It 

is a two-class classifier. 

To start with the SVM classifier, the training and testing datasets is formed in order to train the model. Thereafter, 

classification of the dataset using SVM for untumored and tumored tissues in liver is computed. 

For this research work, datasets of five different patients are considered. Contrast enhanced computed tomography 

images are captured for all the patients at different time intervals and then SVM is used to classify the patient liver 

into tumored and untumored liver cells. The predictive analysis of the model is presented in this paper on the basis 

of the confusion matrix or error matrix evaluated in the results. 

The following parameters are calculated for the above procedure and the results obtained are described in the results 

section: 

1. Accuracy: It is calculated as follows: 

Accuracy=
TP+TN

TP+TN+FP+FN
* 100 

2. Sensitivity: It is an evaluation measure borrowed from statistical decision theory measures [45]. 

Sensitivity= 
TP

TP+FN
 * 100 

3. Specificity: It is an evaluation measure borrowed from statistical decision theory measures [45]. 

Specificity = 
TN

TN+FP
 * 100 

4. Dice Similarity Coefficient (Dice): Many researches [41,42,43,44] have used Dice as the main parameter for 

evaluation of segmentation model accuracy. It is a spatial overlap metric and ranges from 0 to 1,where 0 would 

mean no spatial overlap between two segmentation outcomes whereas 1 would specify complete overlap. 

Dice=
2∗TP

2∗TP+FP+FN
 

5. Volumetric Overlap error (VOE): The value of VOE if 0 would mean perfect segmentation model. 

VOE=1 −
TP

TP+FP+FN
 

Where, 

True positive (TP) refers to a test result that correctly indicates the presence of tumor tissues 

True negative (TN) refers to a test result that correctly indicates the absence of tumor tissues 

False positive (FP) refers to a test result which wrongly indicates that a tumor tissue is present 

False negative (FN) refers to a test result which wrongly indicates that a tumor tissue is absent 

The confusion matrix is formulated for calculation of parameters which has been described in the above explanation. 

EXPERIMENTAL RESULTS 

The original CT image goes through the preprocessing stage in order to remove the existing noise. Thereafter, the 

segmentation function is calculated using gradient magnitude. The output of segmentation algorithm is illustrated in 

series of diagrams as shown in figure 1(a)-(j). 
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Figure 1. (a)original image, (b) filtered image, (c) gradient magnitude, (d)watershed transform, (e) opening and 
closing, (f)Regional maxima of opening-closing by reconstruction, (g)Regional maxima superimposed on original 

image, (h)Watershed Ridge lines, (i)Markers and object boundaries, (j)Coloured Watershed Label Matrix 

The confusion matrix is then evaluated in order to determine the effective performance of the classification model 

using a given set of CT images of patients’ data. This matrix helps in finding the errors present in the classification 

model. Using the parameters of the confusion matrix, the accuracy of tumored tissues is found to be 92%. The 

sensitivity comes out to be 99% and the specificity of the model is formulated to be 96%. The DICE is calculated to 

be 95.71% and VOE is 8.21%. 

The figure 2 is the confusion matrix for our segmentation and classification model. 

 
Figure 2: Confusion Matrix 
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CONCLUSION 

The proposed algorithm of marker controlled watershed identifies the different objects:organs in this case, and 

separates them with significant watershed ridge lines. Tumors in the liver are identified well using this approach. 

The drawback of optimization problem has been sorted by combining the median filter preprocessing step with that 

of marker-controlled watershed segmentation technique. The results of segmentation found are satisfactory with the 

algorithm identifying the different neighbouring organs and detecting the region of interest in the said organ. 

Thereafter SVM is used to classify the patients CT images into untumored and tumored tissues. SVM is a powerful 
tool to help improve the decision-making process during tumor diagnosis. The confusion matrix is a powerful tool 

which helps in evaluating the performance of the classification model, i.e, SVM in this case. It helps in determining 

the number of correct and incorrect predictions made by a classification model. The accuracy achieved is highly 

satisfactory and outperforms many models used by researchers. 
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