
MapReduce model for Memory aware optimization MA-OHMR using Big Data with

Apache Flink

Section A-Research paper

123
Eur. Chem. Bull. 2023,12(Special Issue 9), 123-132

ISSN 2063-5346 MAPREDUCE MODEL FOR MEMORY

AWARE OPTIMIZATION MA-OHMR

USING BIG DATA WITH APACHE FLINK

Vaishali Sontakke 1, Dr. Chandrakala B M 2

Article History: Received: 10.05.2023 Revised: 29.05.2023 Accepted: 09.06.2023

Abstract

 A big data set consists of a large collection of data that has a wide variety of data

characteristics, has a high growth rate and has many complex characteristics. An

infrastructure capable of managing large volumes of real-time data is needed to process

complex data, which is unstructured. The computation of big data will therefore require the

use of MapReduce, which simplifies the process. In Hadoop Distributed File System

(HDFS), MapReduce is used to compute data sets. MapReduce algorithms are adaptable to

various types of transformation. It's possible to review different architectures of the

MapReduce method with Apache Flink. This final project utilizes unstructured text data for

data management. Implementing MapReduce on Linux operating systems and designing

HDFS applications. In Apache Flink, the MapReduce program is used to count words. The

results of this study show that Flink MapReduce is faster at performing computation than

Hadoop MapReduce by 38%.

Keywords: Big Data, Hadoop Apache, MapReduce, Apache Flink.

1 Research scholar, Dayananda Sagar College of Engineering, kumaraswamy layout,

Bengaluru, India

2 Associate Professor, Department of Information Science & Engineering, Dayananda Sagar

College of Engineering, Kumaraswamy layout, Bengaluru, India

DOI:10.48047/ecb/2023.12.9.14

MapReduce model for Memory aware optimization MA-OHMR using Big Data with

Apache Flink

Section A-Research paper

124
Eur. Chem. Bull. 2023,12(Special Issue 9), 123-132

Introduction

There is rapid development in

technology and a corresponding increase

in services. An emerging service is internet

technology, which is growing rapidly. An

Internet Protocol address allows all

electronic devices with an IP address to

communicate with each other. All users

have access to software services, whether

they pay for them or not. Data storage

consumption increases with the

development of complex software. A large

amount of data is consequently contained

in an internet application. The term "Big

Data" refers to data that is large in scale. It

is a large and diverse collection of data

that can be unstructured and is growing

rapidly. It is possible for big data to run

slowly if the computer used to process the

data does not meet the necessary

standards.t in-depth information is easily

obtained and can help make better

decisions [1]. In the case of big data,

Hadoop is the solution. The Apache

license enables Hadoop to be used for

applications that run on large amounts of

data. Hadoop's origins can be traced back

to a 2003 paper by scientists from Google,

Jeffrey Dean and Sanjay Ghemawat on

Google MapReduce and Google File

System (GFS). Hadoop is named after

Doug Cutting's son's toy elephant, which is

also the name of his computer program. A

distributed file system called Hadoop

Distributed File System (HDFS) provides

storage and computation in a distributed

manner. A programming model is used to

distribute clusters of computers/nodes in

Hadoop. It provides scalable and easy data

processing solutions through the use of

MapReduce in the background of Hadoop

[2]. It is possible to process structured,

semistructured, and unstructured data

through data processing. In order to

optimize the process of sending data from

map tasks to reduce tasks, low latency,

high-throughput memory caches are being

replaced with distributed low latency,

high-throughput memory caches. The

computation process uses Apache Flink

functions to meet these requirements. In-

memory batch and stream processing can

be implemented with Apache Flink, an

open source platform for Mapreduce

programs. In Flink, there are two main

APIs: DataSet API, which processes finite

data sets (often referred to as batch

processing), and DataStream API, which

processes infinite data streams (often

referred to as stream processing). The

research will process unstructured text

data. Mapreduce batch processing is

implemented using Linux's HDFS and

Mapreduce batch processing. This research

is highlighting further work upon

following objectives

a) Developing an HDFS-based application

for processing Big Data. b) Improving the

Mapreduce function based on HDFS. c)

Identifying the response time and resource

utilization of the Mapreduce method based

on memory, processor, and disc usage. d)

Comparing the efficiency of Apache Flink

compared with Hadoop Mapreduce

method.

Identifying the problem the

problem in making this research paper

proposing the slow access to big data and

the lengthy computation process of

Hadoop Mapreduce method. The data sets

are large and there are a variety of

variations to manage. Rapidly growing

data (up to date).In big data, both

structured and unstructured data are

collected in large quantities. Business

strategies and decision-making can be

improved by analysing big data. It was

introduced in the 2000s by industry analyst

Doug Laney, who introduced Big Data,

which consists of three important

components: Volume, which is a large

collection of data that can't be processed

by a single computer, and Availability,

which is the ability of an organization to

use large amounts of data. As a result of

the length of time required to process this

data, it cannot be processed traditionally.

Velocity, with large data, the collection of

data will flow quickly and has never

MapReduce model for Memory aware optimization MA-OHMR using Big Data with

Apache Flink

Section A-Research paper

125
Eur. Chem. Bull. 2023,12(Special Issue 9), 123-132

happened in previous technologies that

must be handled in a timely manner. The

data are available in a variety of formats,

including structured data, numeric data in

traditional databases, and unstructured

data.

2. RELATED WORK

In Apache Hadoop, several computers are

connected using the Java programming

language so that they can work together

and synchronize in storing and processing

data. YARN is a framework that facilitates

the negotiation of multiple resources.

Hadoop Distributed File System (HDFS),

Mapreduce, Hadoop Common are four

components that makeup Apache Hadoop.

Mapreduce jobs and resource management

are managed by YARN, a framework that

handles job scheduling [3]. Figure 1 shows

HDFS Architecture.

Figure 1 HDFS Architecture

In addition to the GNU/Linux operating

system, Name Nodes have software that

implements the Name Node system.

Generally, HDFS systems have a Name

Node that serves as a master server for

metadata and file system operations. It

manages the file system namespace,

organizes client access to files, and

performs file system operations such as

renaming, closing, and opening files.

GNU/Linux and Data Node software are

installed on the Data Node, which is a

commodity device. There will be several

Data Nodes in a cluster. HDFS system

data is stored on this node. File system

operations are performed by Data Nodes

based on client requests. As directed by

the Name Node, perform operations such

as creating, deleting, and replicating

blocks. HDFS files contain blocks that

store user data. Individual data nodes or

segments will be used to store files in the

file system. A block is a segment of a file.

As a result, HDFS can only read or write a

minimal amount of data. As needed,

HDFS configuration can be changed to

increase block size from 64MB to 128MB

[4].

This programming model is used to

process large data sets efficiently. There

are three stages in MapReduce, namely the

map stage, the shuffle stage, and the

reduce stage. A single stage, the reduce

stage, combines the shuffle and reduce

stages. By combining the Map function

and Reduce function, developers can

create a MapReduce application. In step

one, the map stage, input data is processed.

Generally, HDFS files are used as input,

and then the files are converted into tuples,

which are pairs of keys and values. During

the reduce stage, the map input data is

processed and the shuffle and reduce

stages are performed, and the new data set

is saved back to HDFS. As an example of

how to map and reduce work, we have the

following illustration. A Mapper Class

tokenizes input, maps it and sorts it by

MapReduce model for Memory aware optimization MA-OHMR using Big Data with

Apache Flink

Section A-Research paper

126
Eur. Chem. Bull. 2023,12(Special Issue 9), 123-132

key-value pairs. The Reducer Class uses

the output of the Mapper Class as input

and then groups them according to the

same value key. Figure 2 shows the

Mapper & Reducer

Figure 2 Mapper & Reducer

A big data computation can be performed

using Apache Flink. There are many

storage systems from which Flink can read

or write data. For distributed computation

over data streams, Flink consists of a

dataflow streaming engine that distributes

data, communicates data, and provides

fault tolerance. In addition to native

overlay iteration and memory

management, Flink also supports batch

processing on top of its streaming engine.

Hadoop's MapReduce process can be

performed by Apache Flink. A Hadoop

Mapper implements the Mapreduce

method on Apache Flink, equivalent to a

FlatMap function. Group Reduce is

equivalent to Hadoop Reducer. A number

of file systems can be used to run Apache

Flink, including HDFS [6][7].

3. PROPOSED METHODOLOGY

In this area of research Flink's

architecture can be summarized as follows:

Figure 3 Apache Flink Architecture

MapReduce model for Memory aware optimization MA-OHMR using Big Data with

Apache Flink

Section A-Research paper

127
Eur. Chem. Bull. 2023,12(Special Issue 9), 123-132

MapReduce tasks are pushed to clusters

via Job Tracker, which allocates tasks to

clusters with the highest priority data,

thereby maximizing their performance.

After a client submits a job to a Job

Tracker, it talks to the Name Node to

determine where the data is located, then it

determines which node is closest to the

data, and it submits the task to that node.

The Job Tracker will get a signal when the

Task Tracker completes a task and assign

it another. The Name Node machine is

used by default [8],[9], Figure 3 shows the

Apache Flink Architecture. Task

Managers are called workers because they

run tasks from the data stream and buffer

and swap it. There are a set of slots in each

Task Tracker, and each slot accepts a task.

The JobTracker first looks for an empty

slot on the server holding the DataNode

that contains the data, if not on that server,

then on a machine in the same rack that

holds the Data Node. The actual job is run

in a separate JVM process, so if the job

crashes, Task Tracker won't be affected.

Task Tracker keeps track of the output and

returns values of the task while it runs. The

Job Tracker is notified after the task has

been completed.

 In this research, HDFS installation and

configuration will be used to design the

system. Then Apache Flink is installed and

configured. In order to run Mapreduce on

HDFS, the Hadoop environment must be

set up on Apache Flink after the

configuration and installation processes

are complete. HDFS stores local data in

text files that are fed into Hadoop from

local data sources after Hadoop is

installed. There are several types of data,

each with different file size. A small

amount of data is tested first, then a larger

amount of data is tested gradually. HDFS

will be used to process the data using the

Hadoop Mapreduce programme. A two-

stage testing process will be followed.

There are two specific ways to implement

Mapreduce, namely the disk-based

technique on Hadoop and the in-memory

batch processing with HDFS using the

Mapreduce method on Flink.

4. PERFORMANCE EVALUATION

The following test scenarios will be

performed in this study: In the tests,

response time and computer performance

were measured. Data processing speed and

resources used are measured with this test.

The following section contains two files

with different sizes, ranging from small to

large, with .txt and .csv extensions: 1. 1.6

GB for Facebook-names-unique 2. 5.2 GB

Facebook-names-original size

4.1 Processing time

Here for test the data, five different data

files has taken. Using Hadoop Mapreduce

& Flink Mapreduce on HDFS comparison

carried out on these different data set. An

average of five tests has taken, makespan

time in table1 and table 2 for Hadoop

Mapreduce for various size of data files

are 1.6, 2.5, 3.4, 4.3,5.2 are considered and

existing model observations are

276,284,289,298,304.. Here improvisation

observed in terms of processing time using

Flink Mapreduce.

Response Time using Flink Mapreduce

Data files in

GB

Processing

time in sec

1.6 276

2.5 284

3.4 289

4.3 298

5.2 304

Average 285

Response Time using Flink Mapreduce

Testing Processing time (seconds)

1.6 GB file 2.5 GB file

1 178 264

2 179 264

MapReduce model for Memory aware optimization MA-OHMR using Big Data with

Apache Flink

Section A-Research paper

128
Eur. Chem. Bull. 2023,12(Special Issue 9), 123-132

3 177 265

4 179 266

5 180 267

Average 179 265

Resource Utilization

According to Table 2, testing on files

measuring 1.6 GB takes about 179.2

seconds. It takes about 265,713 longer for

files measuring 2.5 GB. In comparison to

the test results in Table 2, shows that Flink

Mapreduce on HDFS can be run very

quickly due to the use of in-memory

processing. The output produced by Flink

Mapreduce is also more stable. The

standard deviation of Flink Mapreduce is

smaller than that of Hadoop MapReduce,

as can be seen from the results of the

standard deviation test. The purpose of this

test is to determine how much memory is

needed in processing data to determine

which one uses more resources. For

resource usage, we will observe several

components. HDFS and Yarn are used in

Hadoop MapReduce. It is important to

know that HDFS has three active

components, namely: Data node, Name

node, and Secondary Name node. There

will be two active components in Yarn as

the Hadoop Mapreduce engine: Resource

manager and node manager. HDFS and the

Task manager and Job Manager

Components on Flink are all that are

required for MapReduce on Flink. The

results of testing Hadoop Mapreduce on

various files of different sizes are shown in

Table 3. The use of memory resources in

the first file is relatively low at 29.66%,

while the processor consumes many

resources. The test results indicate that the

processor works harder and uses less

memory than in the first file experiment.

Memory usage increased in the second

experiment. It is an increase of 0.66%. A

batch Flink Mapreduce test was then run in

memory. The memory conditions will

change when Apache Flink is run.

Memory and processor resources are used

more heavily. The memory and processor

graphs do not change much for every

process that runs. Comparing the read and

write processes performed by Hadoop

Mapreduce and the read and write

processes on the disc, the read and write

process on the disc has decreased. When

processing very large files, memory and

processor will reach their maximum. A

small file may still be able to use memory

and processor if the heap is still able to

provide resources.

Test Results for Flink Mapreduce

Performance From Table 3, below are the

results of testing Hadoop Mapreduce

performance on various file sizes. The first

file uses relatively few memory resources

around 29.66%, and the processor

consumes a large amount of resources.

According to the test results, the processor

worked more than in the first file

experiment, and memory resources were

used less. A rise in memory usage was

observed in the second experiment. It is an

increase of 0.66%. Flink Mapreduce was

then tested in-memory in a batch mode.

The memory conditions will change when

Apache Flink is run. The processor and

memory are the most heavily used

resources. There is not much change in the

processor graphs and memory graphs after

every process runs. On the other hand,

when viewed from the read/write process

on the disc, it has decreased in comparison

with Hadoop Mapreduce. When

processing very large files, memory and

processor usage will peak. In this case, the

use of memory and processor is not too

high if the file is small and the memory

heap is still able to provide resources. In

the table below, you will find the test

results. The results in Table 4 above show

the performance of the HDFS-based Flink

MapReduce batch in-memory on the files

tested. Flink Mapreduce does not require

high processor resources for small files

with heap memory capacity. In the event

that the processed file exceeds the heap

memory configured, the percentage of

processor resources will be increased [7].

MapReduce model for Memory aware optimization MA-OHMR using Big Data with

Apache Flink

Section A-Research paper

129
Eur. Chem. Bull. 2023,12(Special Issue 9), 123-132

Analysis

Analyzing the time response to the

Mapreduce process performed by HDFS is

the first step in the analysis. Two

platforms are supported by the Mapreduce

method. After implementing the first on

Hadoop, the second on Apache Flink with

an addition of some transformation

functions. A word count program is used

to implement the MapReduce method. A

standalone or local node is used for

testing. It has been proven that Hadoop

Mapreduce is capable of performing disk-

based computations after testing. In

addition, Apache Flink provides in-

memory batch processing. MapReduce on

Flink performs computations more quickly

than MapReduce on Hadoop [8]. There is

no way to determine with certainty the

performance and resources required when

testing Hadoop Mapreduce. As a result,

the graph obtained is always fluctuating.

As a result of the stability of the graph, test

results obtained with Flink Mapreduce are

more accurate. Using files in sizes larger

than 1GB, you can see a noticeable

difference in speed. The comparison graph

can be found here. Based on Figure 4, the

Mapreduce method can be implemented on

Flink to speed up computations. There is a

37.18% increase in computation time with

the Mapreduce method. This is because

Mapreduce on Flink has a different

method in processing files. In Tables 3 and

4 it is evident the read and writes process

that occurs on the disc when performing

Mapreduce on Hadoop. The read and write

process on Hadoop Mapreduce is greater

than Flink Mapreduce. This causes

Hadoop Mapreduce to be slower. For the

read and write process on Flink

Mapreduce, that is by sending micro-batch

data into memory gradually and

continuously. A micro batch of data is sent

in the same way as a streaming data

stream. Due to this, Flink Mapreduce can

perform read and write tasks

simultaneously, saving both time and

effort.

Figure 4. Response time analysis graph

MapReduce model for Memory aware optimization MA-OHMR using Big Data with

Apache Flink

Section A-Research paper

130
Eur. Chem. Bull. 2023,12(Special Issue 9), 123-132

MA-OHMR (Memory Aware optimized

Hadoop MapReduce)

This other research work proposes MA-

OHMR (Memory Aware optimized

Hadoop MapReduce), MA-OHMR is

developed considering memory as the

constraint and prioritizes memory

allocation and revocation in mapping,

shuffling and reducing, this further

enhances the job of Mapping and reducing.

Optimal memory management and I/o

operation are carried out to use the

resource inefficiently manner. The model

utilizes the GMM (Global Memory

Management) to avoid garbage collection

and MA-OHMR is optimized on the

makespan front to reduce the same. MA-

OHMR is evaluated considering two

datasets i.e. simple workload of Wikipedia

dataset and complex workload of sensor

dataset considering makespan and cost as

an evaluation parameter. Upon evaluation

of datasets varying the different data sizes,

MA-HMR is proven to be efficient and

cost-effective.

1) In the proposed MapReduce model the

job on one computing node is

executed as a thread, and all the job

threads can share the memory

dynamically at the runtime.

2) The proposed model adopts sequential

disk access due to the Thread-based

technique.

3) Balance the data production of CPU

and data consumption of disk I/Os the

proposed model utilizes the multi-

buffer technique, which implements

the non-blocking I/O.

4) The proposed model considers hybrid

merge-sort instead of simply external

sorting from disks, in order to

minimize the size of spilled

intermediate data on disks that help in

realizing the in-memory

5) The proposed model avoids re-reading

them from disks before transferring

them to remote reduce tasks by

caching the final merged files output

by Map tasks in memory and solving

the problem of full Garbage

Collection in the Java virtual machine

6) For effective coordination of the

above strategy, these data buffers are

managed by a global memory

controller and an I/O scheduler on

each node.

Conclusion

It can be concluded from the test

results that Mapreduce can be

implemented in a variety of ways. The

MapReduce method can be transformed to

work like Hadoop with Apache Flink's

transformation function. A key feature of

Apache Flink is that it allows Mapreduce

to send near-real-time micro-batch data to

memory in order to speed up computing.

As opposed to Hadoop MapReduce,

Apache Flink MapReduce is twice as fast

as MapReduce on Apache Flink. The

server computer must have a large hard

drive and memory to achieve maximum

results. It can be concluded that Flink can

speed up computations by implementing

the Mapreduce method. There is an

increase in computation time of 37.18%

when using the Mapreduce method. The

reason for this is that MapReduce on Flink

processes files differently. As shown in

Tables 3 and 4, Hadoop performs

Mapreduce on the disc by reading and

writing data. Hadoop MapReduce is faster

at reading and writing than Flink

MapReduce. The result is slower Hadoop

MapReduce. In Flink MapReduce, micro

batches of data are continuously and

gradually read and written into memory.

The micro-batch data is transmitted in the

same way as streaming data. As a result,

Flink MapReduce can perform the read

and write processes simultaneously,

thereby saving processing time.

Data availability statement

The data used to support the findings of

this study are included in the article

MapReduce model for Memory aware optimization MA-OHMR using Big Data with

Apache Flink

Section A-Research paper

131
Eur. Chem. Bull. 2023,12(Special Issue 9), 123-132

Funding statement

The authors declare that no funding was

received for Research and Publication. It

was performed as a part of the

Employment of Institutions.

References:

[1] R. S. K. V. and D. N. P. Kavya, "Big

Data Processing by harnessing Hadoop -

MapReduce for Optimising Analytical

Workloads," IEEE,2014.

[2] S. Zhang, J. Han, Z. Liu, K. Wang and

S. Feng, "Accelerating MapReduce with

Distributed Memory Cache," 15th

International Conference on Parallel and

Distributed Systems, 2009.

[3] M. Junghanns, A. Petermann, N.

Teichmann, K. Gómez and E. Rahm,

"Analysing Extended Property Graphs

with Apache Flink," ISBN,2016.

[4] P. Carbone, S. Ewen, S. Haridi, A.

Katsifodimos, V. Markl and K. Tzoumas,

"Apache Flink: Stream and Batch

Processing in a Single Engine," Bulletin of

the IEEE Computer Society Technical

Committee on Data Engineering, 2015.

[5] X. Wu, "A MapReduce Optimisation

Method on Hadoop Cluster," International

Conference on Industrial Informatics-

Computing Technology, Intelligent

Technology, Industrial Information, 2015.

[6] S. Baltagi, Overview of Apache Flink:

Next-Gen Big Data, Chicago: Chicago

Apache Flink Meetup, 2015.

[7] V. Markl, "Breaking the Chains: On

Declarative Data Analysis and Data

Independence in the Big Data Era,"

Proceedings of the VLDB Endowment,

2014.

[8] K. Tzoumas, "Apache Flink," 2015.

[Online]. Available:

https://www.slideshare.net/KostasTzouma

s. [Accessed 4 December 2017].

Table 3 Hadoop Mapreduce Performance Testing

No.

1.6 GB file 2.4 GB file

CPU

Disc kB/s

Memor

y

CPU

Disc kB/s

Memor

y
Read Write Read Write

1 91 % 10343 836 56 % 89 % 11088 748 63 %

2 90 % 10292 362 55 % 89 % 11324 694 63%

3 90 % 10532 818 62 % 89 % 11449 663 64 %

4 90% 10526 1174 62 % 89 % 11090 1009 64 %

5 90% 10465 1217 63 % 89 % 11188 897 64 %

Avg 90% 10431 881 60 % 89% 11228 802 64 %

MapReduce model for Memory aware optimization MA-OHMR using Big Data with

Apache Flink

Section A-Research paper

132
Eur. Chem. Bull. 2023,12(Special Issue 9), 123-132

Table 4 Flink Mapreduce Performance Testing

No.

1.6 GB file 2.4 GB file

CPU

Disc kB/s

Memor

y

CPU

Disc kB/s

Memor

y
Read Write Read Write

1 88 % 12764 5074 27 % 88 % 10966 3565 30 %

2 92% 10715 4198 30 % 83% 10861 3646 30 %

3 91% 10585 4002 30 % 92% 11837 3506 30 %

4 92% 9595 3511 29 % 90 % 11025 3495 30 %

5 91 % 10857 3723 29 % 90% 11241 3518 30 %

Avg 91% 10903 4101 29 % 89% 11186 3546 30 %

