

Section A-Research paper

SIMULTANEOUS ESTIMATION OF INULIN AND ESCULETIN IN AN AYURVEDIC FORMULATION USING RP-HPLC AFTER DERIVATIZING THE INULIN Gouri.V.Kanabaragi, Alisha Syeda, Muddukrishna B S, Gundawar Ravi, Niharika Gaddam, S. G. Vasantharaju*

Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Udupi, Karnataka

Corresponding Author*:

Dr. SG Vasantharaju Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Udupi, Karnataka. E-mail: sgvasanth65@gmail.com Mobile No.: +919880106983

ABSTRACT

A simple, sensitive, precise, and accurate RP-HPLC assay method was developed for simultaneous estimation of Inulin and Esculetin in a formulation containing Chicory. Inulin is a polysaccharide and due to a lack of chromophore, it is to be derivatized before analyzing. Hence was opted to derivatized Inulin using Seliwinoff's reagent. The chromatographic separation was achieved using C_{18} Phenomenex Hyperclone BDS column (250×4.6mm, 5µ). The mobile phase containing a mixture of 10 mM of phosphate buffer (pH 3.0) and acetonitrile (35: 65 v/v) at a flow rate of 1ml/min was used and the response was measured at 364nm (isosbestic point) using a PDA detector. The retention time of Esculetin and Inulin is found to be 3.7 and 7.1 minutes respectively with a resolution of 8.5. The method was linear over the concentration range of $0.05-0.8 \,\mu\text{g/ml}$ for Esculetin and $0.4-3 \,\mu\text{g/ml}$ for derivatized Inulin with a correlation constant of \geq 0.999. The method was found to be precise, and robust within the acceptable limits. The LOD and LOQ were to be 0.006308 µg/ml and 0.01912 µg/ml for Esculetin and 0.06131 µg/ml and 0.1857 µg/ml for derivatized Inulin which indicates the sensitivity of the method. Accuracy was determined at 80%, 100%, and 120% and the results obtained were within limits. The relative standard deviation was not more than 2.0%. The % recovery of Esculetin and Inulin in herbal preparation were found to be 0.2% and 58% respectively.

Keywords: Inulin, Esculetin, Derivatization, HPLC, Validation.

Section A-Research paper

INTRODUCTION

Polysaccharides, coumarins, flavonoids, sesquiterpene lactones (lactucin and lactucopicrin), tannins, and other phytochemicals are found in chicory root. Inulin is a fructose polymer with a - (2-1)-glycosidic bond that makes up to 68 percent of the total components in fresh chicory roots.

Esculetin belongs to the class of coumarins, featuring two hydroxyl groups at carbons 6 and 7 that serve as candidates for O-methylation or O-glycosylation. Esculetin has powerful antioxidant and photoprotective properties.

Inulin is a kind of dietary fiber that has a strong prebiotic impact and immunostimulant effects. Their application in the production of functional food and low caloric nutrition formulas constantly increases nowadays, hence Inulin content in foods and adulteration needs to be regulated. Hence Reverse – Phase High Performance Liquid Chromatography (HPLC) is the most preferred method.

Esculetin has a variety of biological properties, including the suppression of xanthine oxidase activity, anti-oxidant activity, anticancer action, and antioxidant activity. Inhibiting the development of human breast cancer cells. As a result, it is critical to build a basic and efficient approach for quantitative analysis of these components.

Section A-Research paper

EXPERIMENTAL

Material and Methods Instrument

Shimadzu HPLC controlled by LC solution software, Shimadzu LC 20 AD equipped with, Pump LC-20 AD, Autoinjector, SIL-20 AC HT, Column oven: CTO-10ASVP, Photodiode array detector: SPD M-10A VP, System controller: SCL-10A VP were used for the study.

Materials

Inulin from Chicory and Esculetin were purchased from Sigma Aldrich, Bangalore. All chemicals and reagents used were of analytical grade. Ultra-purified water was prepared the in lab using Merck Water Purification system throughout the work. Chicory capsules were purchased from XOVAK Pharma, India.

General Procedure

Derivatization of marker

Esculetin is a simple coumarin that can be analyzed using C_{18} column. Hence derivatization is not required. Since Inulin is a high molecular weight polysaccharide special column are required for its analysis. Direct analysis of the molecule on C_{18} is not possible. Trials were also carried out on C_8 column as well but it was not been detected.

Preparation of Seliwinoff's reagent

50mg of Resorcinol was weighed and diluted in 33 ml of 0.1N HCl and the volume was made up with water.

Derivatization Procedure

Pipetted out from the working stock and prepared various concentrations and made up the volume with Seliwinoff reagent. Heated these solutions in a boiling water bath for 30 secs. Reddish pink color will appear upon completion of the reaction.

Section A-Research paper

Determination of λ_{max}

Standards of Esculetin and derivatized Inulin were analyzed under Ultraviolet (UV) spectrophotometry. Suitable wavelength was selected for analysis by determining the isosbestic point. Esculetin and derivatized Inulin of concentration 10μ g/ml each were taken and UV spectrum was recorded from 200- 800nm. The spectrum was overlaid and the isosbestic point was found to be 369nm.

HPLC Method validation

Specificity

Blank i.e. mobile phase and a standard solution containing Esculetin and derivatized Inulin were injected twice into the HPLC system and the chromatograms were recorded.

System suitability

1ml was withdrawn from Esculetin, Inulin standard stock solution. Made up the volume with diluent and injected into HPLC.

Linearity

A series of standard solutions for the mixtures of Esculetin and derivatized Inulin was prepared

i.e., 0.05, 0.1, 0.2, 0.4, 0.8 μ g/ml for Esculetin and 0.4, 0.8, 1, 2, 3 μ g/ml for derivatized Inulin

Range

The range is the interval between the upper and lower levels of the analyte that have been determined with precision, accuracy, and linearity using the method as written. The range of an analytical procedure was found to be 0.05-0.8 μ g/ml for Esculetin and 0.4-3 μ g/ml for derivatized Inulin.

Section A-Research paper

LOD & LOQ

The LOD and LOQ of the developed method were calculated based on the standard deviation of the response and the slope

 $LOD = 3.3 \sigma/S$ and $LOQ = 10 \sigma/S$

Accuracy

The accuracy of the method was performed based on the recovery of known amounts of analyte by standard spiking method. Accuracy was performed at 3 levels of 80%, 100% and 120% of standard concentration. 0.16 μ g/ml, 0.2 μ g/ml, 0.24 μ g/ml for Esculetin and 0.8 μ g/ml, 1 μ g/ml, 1.2 μ g/ml for derivatized Inulin.

Precision

Repeatability or intra- day precision, Intermediate or inter-day precision were performed. 6 injections of standard mixture solution were injected and the retention time and peak area of the drugs were analyzed. Mean, SD and RSD were calculated.

Robustness

Parameters are varied over a known range and their effect on the results are determined. These include: Flow rate, Column oven temperature and Mobile phase composition

Section A-Research paper

RESULTS AND DISCUSSION

Method validation was performed and validated as per ICH guidelines for the following parameters:

System suitability

1ml was withdrawn from Esculetin and derivatized Inulin standard stock solution. Make up the volume with diluent and inject them into HPLC. Results are displayed in Table 1.

Specificity

Blank i.e. mobile phase and a standard solution containing Esculetin and derivatized Inulin were injected twice into the HPLC system and the chromatograms were recorded. The peak purity of the standard solution of Esculetin and Inulin was generated with the help of Shimadzu system equipped with a PDA detector.

Linearity and Range

A series of standard solutions for the mixtures of Esculetin and derivatized Inulin were prepared as stated below.

0.05, 0.1, 0.2, 0.4, 0.8 µg/ml - Esculetin

0.4, 0.8, 1, 2, 3 µg/ml – derivatized Inulin

Each standard concentration was injected in triplicate and the chromatograms were recorded for all the linearity standards under optimized conditions. The calibration curve was prepared by plotting the mean peak area against the concentration standard. The slope, Y-intercept correlation coefficient for Esculetin, and derivatized Inulin were reported. Results are displayed in Table 2 and Table 3.

Section A-Research paper

Range

The range is the interval between the upper and lower levels of the analyte which have to be determined with precision, accuracy, and linearity using the method as written. The range of an analytical procedure was found to be 0.05-0.8 μ g/ml for Esculetin and 0.4-3 μ g/ml for derivatized Inulin.

LOD and LOQ

The LOD and LOQ were determined by the linearity studies. To compute the LOD and LOQ, the residual standard deviation of a regression line or the standard deviation of y-intercepts of regression lines were considered. The results of the same were represented in Table No 7.

Accuracy

Preparation of sample

Accuracy of method was performed based on the recovery of known amounts of analyte by standard spiking method. A known amount of standard drug was spiked to the pre-analysed standard samples and the % recovery of the drug was determined. Accuracy was performed at three levels of 80%, 100% and 120% of the standard concentration. The three concentration levels were 0.16 μ g/ml, 0.2 μ g/ml, 0.24 μ g/ml for Esculetin and 0.8 μ g/ml, 1 μ g/ml, 1.2 μ g/ml for Inulin. The percentage recovery was calculated from the peak area of each drug. Results are displayed in Table 4 and Table 5.

Precision

Repeatability or intra-day precision

6 injections of a standard mixture of 1 μ g/ml of derivatized Inulin and 0.2 μ g/ml of Esculetin were injected into the system and the retention time and peak area of both the drugs were analyzed on the different days. Mean, SD, and RSD were calculated. Results are displayed in Table 6.

Section A-Research paper

Limit of detection and limit of quantification:

The LOD and LOQ of the developed method were evaluated based on the standard deviation and the slope. The calculated LOD and LOQ values of the described method are tabulated as follows:

Robustness

Robustness was evaluated by changing the various HPLC parameters.

APPLICATION TO FORMULATION

Average weight of 10 capsules was taken and an equivalent amount of powder was weighed. Weighed 0.4g of encapsulated chicory powder in 100ml volumetric flask and make up the volume with methanol and water separately. Sonicate the solutions for 30 minutes with frequent shaking and keep for maceration for 24 hours. The extract was filtered and 0.5 ml of the filtrate of each was mixed with 50:50 methanol in water solution.0.1 ml of the above solution was pipetted out and made up the volume with Seliwinoff reagent and treated. The above solution was then injected into HPLC.

%Assay = (sample abs/std abs) X (std conc/ test concentration) x 100

Section A-Research paper

ACKNOWLEDGMENT

The authors are thankful to the Manipal College of Pharmaceutical Sciences for providing technical support during the research.

Conclusion

Inulin being a polysaccharide special column were required for its estimation. Hence, we opted to derivatize Inulin by simple way to estimated it in chicory. A simple, sensitive, precise, accurate assay method was developed using RP-HPLC for simultaneous estimation of Esculetin and Inulin. The method was validated and all it were found to be within the acceptance criteria. The above method was applied for the formulation assay was determined for Esculetin and Inulin and it was found to be 0.2% and 58% respectively.

REFERENCES

- 1. Shoaib M, Shehzad A, Omar M, Rakha A, Raza H, Sharif HR, et al. Inulin: Properties, health benefits, and food applications, Carbohydrate Polymers 2016;147:444–54.
- USP 29-NF 24 The United States Pharmacopoeia and The National Formulary: The Official Compendia of Standards 29/24. Rockville, MD: The United States Pharmacopeial Convention.
- 3. Barclay T, Ginic-Markovic M, Cooper P, Petrovsky N. Inulin-a versatile polysaccharide with multiple pharmaceutical and food chemical uses, Journal of Excipients and Food Chemicals. 2016;1(3):1132.
- 4. Abed SM, Ali AH, Noman A, Niazi S, Ammar AF, Bakry AM. Inulin as prebiotics and its applications in food industry and human health; a review, International Journal of Agriculture Innovations and Research, 2016;5(1):88-97.
- 5. Esculetin [Internet]. Pubchem.ncbi.nlm.nih.gov.
- 6. Mcrary, W. L., & Slattery, M. C. (n.d.). THE COLORIMETRIC DETERMINATION OF FRUCTOSAN IN PLANT MATERIAL
- Sánchez-Viesca F, Gómez R. Reactivities involved in the Seliwanoff reaction. Modern Chemistry. 2018;6(1):1-5.
- 8. http://myweb.liu.edu/~nmatsuna/che122/exp20.pdf

Section A-Research paper

 ICH Harmonised Tripartite Guideline. Validation of analytical procedures: text and methodology Q2 (R1). InInternational conference on harmonization of technical requirements for registration of pharmaceuticals for human use 2005. Switzerland: Geneva.

Figures

Section A-Research paper

Fig 3 - Chromatogram of Blank

Fig 5 - Peak purity index of Esculetin

Fig 6 - Peak purity index of derivatized Inulin

Fig 7- Linearity plot of Esculetin

Section A-Research paper

Fig 8 - Linearity plot of derivatized Inulin

Fig 9-Chromatogram of formulation containing chicory powder

Section A-Research paper

Tables

Table 1 – Results of System Suitability

Parameter	Observation		Acceptance criteria
	Esculetin	Derivatized	
		Inulin	
%RSD of	0.14828	0.111841	NMT 2%
retention time of			
6 injections			
%RSD of area of	0.29406	1.294399	NMT 2%
6 injections			
Plate count	3666.429	7340.465	More than 2000
Tailing factor	1.795	1.606	NMT 2.0
Resolution	8.5		NLT 2

Table 2- Results of linearity studies of Esculetin

Sr. No.	Concentration(µg/ml)	Area			Average
1	0.05	2293	2281	2267	2280.333
2	0.1	4909	4937	4950	4932

Section A-Research paper

3	0.2	11202	11239	11228	11223		
4	0.4	24293	24271	24282	24282		
5	0.8	48702	48749	48732	48727.67		
Regressi	on Equation	y = 62362x - 1043.3					
Correlat	ion Coefficient	$R^2 = 0.9998$					
Slope		62362					
y-Interco	ept	1043.3					

Table 3- Results of linearity studies of derivatized Inulin

Sr. No.	Concentration(µg/ml)	Area			Average	
1	0.4	1505	1520	1500	1508.333	
2	0.8	3655	3698	3621	3658	
3	1	4986	4990	4956	4977.333	
4	2	11438	11442	11430	11436.67	
5	3	17157	17138	17127	17140.67	
Regressi	on Equation	y = 6102x - 1042.7				
Correlat	ion Coefficient	$R^2 = 0.9991$				
Slope		6102				
y-Interce	ept	1042.7				

Section A-Research paper

Table 4-Recovery analysis of Esculetin

		Sample	Amou	nt added	Total	Peak	Amount	Mean	Amount	%Recovery
					amount	Area	Found	amount	recovered	
			Test	Standard						
	80	А	0.2	0.16	0.36	21163	0.356			
		В	0.2	0.16	0.36	21119	0.355	0.355	0.158	98.826
		C	0.2	0.16	0.36	21149	0.355			
	100	А	0.2	0.2	0.4	23349	0.391			
		В	0.2	0.2	0.4	23018	0.385	0.388	0.194	97.060
		C	0.2	0.2	0.4	23138	0.387			
	120	А	0.2	0.24	0.44	26041	0.434			
stin		В	0.2	0.24	0.44	26039	0.434	0.433	0.236	98.713
Escule		C	0.2	0.24	0.44	26049	0.434			

Section A-Research paper

		Sample	Amou	int added	Total amount	Peak Area	Amount Found	Mean amount	Amount recovered	%Recovery
			Test	Standard						
	80	А	1	0.8	1.8	9803	1 777			
			-	0.0	1.0	2003	1.,,,,			
		В	1	0.8	1.8	9748	1.768	1.777	0.789	98.747
		С	1	0.8	1.8	9859	1.786			
	100	A	1	1	2	11072	1.985			
		В	1	1	2	11034	1.979	1.983	0.991	99.156
		C	1	1	2	11069	1.984			
	120	А	1	1.2	2.2	15665	2.738			
		В	1	1.2	2.2	15508	2.712	2.715	2.262	100.184
Inulin		C	1	1.2	2.2	15403	2.695			

Table 5 -Recovery analysis of Derivatized Inulin

Section A-Research paper

Table 6 -Precision results

Precision		Intra-d	ay	Inter-day			
		RT	Area	RT	Area		
						$RSD \le 2\%$	Pass
	Inulin	0.111	1.29	0.18	1.32		
	Esculetin	0.148	0.29	0.11	0.33		

Table 7 -LOD & LOQ

	Esculetin µg/ml	derivatized Inulin µg/ml
Limit of Detection	0.006308	0.06131
Limit of Quantification	0.01912	0.1857

Section A-Research paper

Table 8 -Robustness results

	Change in flowrate						
	Esculetin						
	0.9 ml/min	1 ml/min	1.1 ml/min				
	0.39524	0.1668	0.35976				
	Inulin						
	0.9 ml/min	1 ml/min	1.1 ml/min				
	1.443	0.54375	1.27529				
	Change in Column	n oven temperatu	re				
	Esculetin						
	15 °C	20 °C	25 °C				
Robustness	0.42992 0.1668 0.32		0.32964				
	Inulin						
	15 °C	20 °C	25 °C				
	1.20528	0.54375	0.2033				
	Change in mobile phase composition						
	Esculetin						
	37:63	35:65	33:67				
	0.429924	0.166797	0.329635				
	Inulin						
	37:63	35:65	33:67				
	1.11467	0.54375	1.49781				

Section A-Research paper

Table No. 9- % Recovery of Inulin in the formulation

Sr. No.	% Recovery	
	Esculetin	Inulin
1	0.2	58.03
2	0.203	58.15
3	0.21	58.09
Average	0.204333	58.09
SD±	0.005132	0.06