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Abstract: -This work has revealed some structural properties of the Generalized Gamma 

Distribution (GGD). The parameters of GGD have been calculated using the Jeffrey's & 

extension of Jeffrey's priors using the Bayesian technique under four different loss functions. 

The estimate so obtained was compared with the conventional Maximum Likelihood 

Estimator using MSE using simulated studies with varied sample sizes and R software. The 

survival function equation has been added to Jeffrey's earlier research. 
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1. Introduction: 

A flexible family is needed to model duration, and one such example is Stacy's (1962) 

Generalized Gamma Distribution (GGD). The GGD offers a wide range of various shape and 

hazard functions. (2021) Seufert Mean Percentage Score (MOS)-based assessments produce 

problematic and deceptive outcomes because inquiries into subjective Quality of Experience 

(QoE) use biased assumptions about ordinal rating scale.Economic duration analysis uses a 

variety of distributions, including the GGD subfamilies of exponential (Kiefer, 1984), gamma 

(Lancaster, 1979), and Weibull (Favero et al., 1994). The lognormal distribution, which is 

regarded to be a limiting distribution, was also employed by Jasggia in economics (1991). To 

estimate the posterior distribution of GGD, Jeffreys' prior distribution is expanded in this 

section of the essay. We have investigated several different loss functions to obtain a precise 

evaluation of the scale parameter of GGD. Research on the precise small and large 

eccentricity asymptotic in non-logarithmic method for linear procedures with self-governing 

innovations was done by Peligrad (2018). We will refer to the linear processes that we study 

as the "long memory case" because they are universal in nature. By using the likelihood of a 

single observation and its ordinates, Savsani and Ghosh (2017) devised a method for 

determining the posterior distribution of the Moderate Distribution. The 2017 study by 
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Savsani and Ghosh served as the basis for this approach. Mishra and others (2019) for the 

processing and classification of data, epidemiological and statistical methods are available. 

These approaches can be used in every single unique situation. In this post, we discussed both 

parametric and non-parametric approaches, their prerequisites, how to pick the best statistical 

measurement and analysis, and how to interpret biological data. Senators Costa and Sarmento 

(2019) Over the past few years, using statistical software in both professional and academic 

settings have grown in popularity. Everyone has used statistical software at some point in 

their lives, from students and professors to specialists and everyday consumers. In this paper, 

we provide a statistical assessment of several theoretical notions to facilitate access to these 

concepts.  

 

1.1 Posterior density by using postponement of Jeffrey’s previous. 

Let (X1,X2,……, Xn) be an n-piece random model that consumes the probability density 

function as 

𝑓(𝑥; 𝜆, 𝛽, 𝑘) =
𝜆𝛽

Γ𝑘
(𝜆𝑥)𝑘𝛽−1𝑒−(𝜆𝑥)𝛽 , for 𝑥 > 0 and 𝜆, 𝛽, 𝑘 > 0. 

Given by is the probability function. 

𝐿(𝑥; 𝜆, 𝛽, 𝑘) =
𝜆𝑛(𝑘𝛽)𝛽𝑛

Γ𝑛(𝑘)
∏  

𝑛

𝑖=1

𝑥𝑖
𝑘𝛽−1

𝑒−𝜆𝛽 ∑  𝑛
𝑖=1 𝑥𝑖 . 

We study the previousdelivery of being. 

𝑔(𝜆) ∝ [det |𝐼(𝜆)|]𝑐, 𝑐 ∈ 𝑅+ 

𝑔(𝜆) = 𝜌
1

𝜆2𝑐        (1) 

where  is constant. The following distribution of  is known by 

𝜋2(𝜆 ∣ 𝑥) ∝ 𝐿(𝑥 ∣ 𝜆)𝑔(𝜆)      (2) 

Using eq. (1) in eq. (2), we get 

𝜋2(𝜆 ∣ 𝑥) ∝
𝜆𝑛𝑘𝛽−2𝑐𝛽𝑛

Γ𝑛(𝑘)
𝑒−𝜆𝛽 ∑  𝑛

𝑖=1 𝑥𝑖
𝛽

∏  𝑛
𝑖=1 (𝑥𝑖)

𝑘𝛽−1

𝜋2(𝜆 ∣ 𝑥) = 𝜌2𝜆
𝑛𝑘𝛽−2𝑐𝑒−𝜆𝛽 ∑  𝑛

𝑖=1 𝑥𝑖
𝛽

    (3) 

where 2 is independent of  . 

𝜌2
−1 = ∫  

∞

0

𝜆𝑛𝑘𝛽−2𝑐𝑒−𝜆𝜌 ∑  𝑛
𝑖=1 𝑥𝑖

𝛽

𝑑𝜆 

On resolving the above appearance, we get 
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𝜌2 =
(∑  𝑛

𝑖=1 𝑥𝑖
𝛽
)
𝑛𝑘−

2𝑐

𝛽
+1

Γ (𝑛𝑘 −
2𝑐

𝛽
+ 1)

 

calculating 2 in eq. (3), we get the posterior distribution given as below. 

𝜋2(𝜆 ∣ 𝑥) = (
𝑒−𝜆𝛽 ∑  𝑛

𝑖=1 𝑥𝑖𝜆𝑛𝑘𝛽−2𝑐(∑  𝑛
𝑖=1 𝑥𝑖

𝛽
)
𝑛𝑘−

2𝑐
𝛽

+1

Γ(𝑛𝑘−
2𝑐

𝛽
+1)

)   (4) 

 

1.2 Squared error loss estimate Function (SELF) 

Squared error loss 𝑙𝑆𝐼(�̂�, 𝜆) = 𝑎(�̂� − 𝜆)2for some constant a , the risk function is 

𝑅(�̂�) = ∫  
∞

0
𝑎(�̂� − 𝜆)2𝜋2(𝜆 ∣ 𝑥)𝑑𝜆      (5) 

By using eq. (4) in eq. (5), we take 

𝑅(�̂�) = ∫  
∞

0

𝑎(�̂� − 𝜆)2 (
𝑒−𝜆𝛽 ∑  

𝑥𝑖
𝑖=1

𝑥𝑖𝜆𝑛𝑘𝛽−2𝑐(∑  𝑛
𝑖=1 𝑥𝑖

𝛽
)
𝑛𝑘−

2𝑐

𝛽
+1

Γ (𝑛𝑘 −
2𝑐

𝛽
+ 1)

𝑑𝜆 

𝑅(�̂�)

=
𝑎(∑  𝑛

𝑖=1 𝑥𝑖
𝛽
)
𝑛𝑘−

2𝑐

𝛽
+1

Γ (𝑛𝑘 −
2𝑐

𝛽
+ 1)

[
 
 
 
 �̂�2 ∫  

∞

0

𝑒−𝜆𝛽 ∑  𝑛
𝑖=1 𝑥𝑖

𝛽

(𝜆𝛽)
𝑛𝑘−

2𝑐

𝛽 𝑑𝜆 + ∫  
∞

0

𝑒−𝜆𝛽 ∑  𝑛
𝑖=1 𝑥𝑖

𝛽

(𝜆𝛽)
𝑛𝑘+

2(1−𝑐)

𝛽 𝑑𝜆

−2�̂� ∫  
∞

0

𝑒−𝜆𝛽 ∑  𝑛
𝑖=1 𝑥𝑖(𝜆𝛽)

𝑛𝑘+
(1−2𝑐)

𝛽 𝑑𝜆
]
 
 
 
 

 

Resolving the above appearance, we have 

𝑅(�̂�) = 𝑎�̂�2 + 𝑎
Γ (𝑛𝑘 −

2𝑐

𝛽
+

2

𝛽
+ 1)

(∑  𝑛
𝑖=1 𝑥𝑖

𝛽
)

2

𝛽
Γ (𝑛𝑘 −

2𝑐

𝛽
+ 1)

−
2𝑎�̂�Γ (𝑛𝑘 −

2𝑐

𝛽
+

1

𝛽
+ 1)

(∑  𝑛
𝑖=1 𝑥𝑖

𝛽
)

1

𝛽
Γ (𝑛𝑘 −

2𝑐

𝛽
+ 1)

 

Now togain Bayesian estimator, we take
∂𝑅(�̂�)

∂�̂�
= 0 

∂

∂�̂�
[
 
 
 

𝑎�̂�2 +
𝑎Γ (𝑛𝑘 −

2𝑐

𝛽
+

2

𝛽
+ 1)

(∑  𝑛
𝑖=1 𝑥𝑖

𝛽
)

2

𝛽
Γ (𝑛𝑘 −

2𝑐

𝛽
+ 1)

−
2𝑎�̂�Γ (𝑛𝑘 −

2𝑐

𝛽
+

1

𝛽
+ 1)

(∑  𝑛
𝑖=1 𝑥𝑖

𝛽
)

1

𝛽
Γ (𝑛𝑘 −

2𝑐

𝛽
+ 1)]

 
 
 

= 0 

�̂� =
1

(∑  𝑛
𝑖=1 𝑥𝑖)

{
Γ(𝑛𝑘−

2𝑐

𝛽
+

1

𝛽
+1)

Γ(𝑛𝑘−
2𝑐

𝛽
+1)

}     (6) 

Remark: Replacing c=1/2 in eq. (6), the same Bayes estimation is got as in eq. (2) equivalent 

to the Jeffrey’s prior. 

1.3 Estimation Al-Bayyati’s loss function (ALF): 

Al-Bayyati’s loss function 𝑙𝑁𝑙(�̂�, 𝜆) = 𝜆𝑐1(�̂� − 𝜆)2the risk function is given as 
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𝑅(�̂�) = ∫  
∞

0
𝜆𝑐1(�̂� − 𝜆)2𝜋2(𝜆 ∣ 𝑥)𝑑𝜆      (7) 

Using eq. (4) in eq. (7), we devise 

𝑅(�̂�)

=
𝑎(∑  𝑛

𝑖=1 𝑥𝑖
𝛽
)
𝑛𝑘−

2𝑐

𝛽
+1

Γ (𝑛𝑘 −
2𝑐

𝛽
+ 1)

[
 
 
 
 �̂�2 ∫  

∞

0

𝑒−𝜆𝛽 ∑  ∞
𝑖=1 𝑥𝑖

′
(𝜆𝛽)

𝑛𝑘+
(𝑐1−2𝑐)

𝛽 𝑑𝜆 + ∫  
∞

0

𝑒−𝜆𝛽 ∑  ∞
𝑖=1 𝑥𝑗

′

(𝜆𝛽)
𝑛𝑘+

(𝑐1−2𝑐+2)

𝛽 𝑑𝜆

−2�̂� ∫  
∞

0

𝑒−𝜆𝛽 ∑  ∞
𝑖=1 𝑥𝑖(𝜆𝛽)

𝑛𝑘+
(𝑐1−2𝑐+1)

𝛽 𝑑𝜆
]
 
 
 
 

 

Solving the above expression, we have 

𝑅(�̂�) =
�̂�2Γ (𝑛𝑘 +

𝑐1

𝛽
−

2𝑐

𝛽
+ 1)

(∑  𝑛
𝑖=1 𝑥𝑖

𝛽
)

9

𝛽
Γ (𝑛𝑘 −

2𝑐

𝛽
+ 1)

+
Γ (𝑛𝑘 −

2𝑐

𝛽
+

𝑐1

𝛽
+

2

𝛽
+ 1)

(∑  𝑛
𝑖=1 𝑥𝑖

𝛽
)

902

𝛽
Γ (𝑛𝑘 −

2𝑐

𝛽
+ 1)

−
2�̂�Γ (𝑛𝑘 −

2𝑐

𝛽
+

𝑐1

𝛽
+

1

𝛽
+ 1)

(∑  𝑛
𝑖=1 𝑥𝑖

𝛽
)

9+1

𝛽
Γ (𝑛𝑘 −

1

𝛽
+ 1)

. 

Now togain Bayesian estimator, we take
∂𝑅(�̂�)

∂�̂�
= 0 ∣ 

∂

∂�̂�
[
 
 
 �̂�2Γ (𝑛𝑘 +

𝑐1

𝛽
−

2𝑐

𝛽
+ 1)

(∑  𝑛
𝑖=1 𝑥𝑖

𝛽
)

𝑐1
𝛽

Γ (𝑛𝑘 −
2𝑐

𝛽
+ 1)

+
Γ (𝑛𝑘 −

2𝑐

𝛽
+

𝑐1

𝛽
+

2

𝛽
+ 1)

(∑  𝑛
𝑖=1 𝑥𝑖

𝛽
)

𝑐1+2
𝛽

Γ (𝑛𝑘 −
2𝑐

𝛽
+ 1)

−
2�̂�Γ (𝑛𝑘 −

2𝑐

𝛽
+

𝑐1

𝛽
+

1

𝛽
+ 1)

(∑  𝑛
𝑖=1 𝑥𝑖

𝛽
)

𝑐1+1
𝛽

Γ (𝑛𝑘 −
1

𝛽
+ 1)]

 
 
 

= 0 

�̂� =
1

(∑  𝑛
𝑖=1 𝑥𝑖)

{
Γ(𝑛𝑘−

2𝑐

𝛽
+

𝑐1
𝛽

+
1

𝛽
+1)

Γ(𝑛𝑘−
2𝑐

𝛽
+

𝑐1
𝛽

+1)
}    (8) 

Remark: Exchanging c=1/2 in eq. (8), the same Bayes estimation is got as in eq. (6) 

equivalent to the Jeffrey’s previous. 

 

1.4 Precautionary Loss Function (PLF) 

By using precautionary loss function 𝑙𝑝𝑟(�̂�, 𝜆) =
(�̂�−𝜆)2

�̂�
the risk function is given 

𝑅(�̂�) = ∫  
∞

0

(�̂�−𝜆)2

�̂�
𝜋2(𝜆 ∣ 𝑥)𝑑𝜆     (9) 

Using eq. (4) in eq. (9), we take 

𝑅(�̂�) =
(∑  𝑛

𝑖=1 𝑥𝑖
𝛽
)
𝑛𝑘−

2𝑐

𝛽
+1

�̂�Γ (𝑛𝑘 −
2𝑐

𝛽
+ 1)

[
 
 
 
 ∫  

∞

0

𝑒−𝜆𝜌 ∑  𝑛
𝑖=1 𝑥𝑖(𝜆𝛽)

𝑛𝑘+
2(1−𝑐)

𝛽 𝑑𝜆 + �̂�0
∞𝑒−𝜆𝜌 ∑  𝑛

𝑖=1 𝑥𝑖
𝛽

(𝜆𝛽)
𝑛𝑘−

2𝑐

𝛽 𝑑𝜆]

−2∫  
∞

0

𝑒−𝜆𝛽 ∑  ∞
𝑖=1 𝑥𝑖(𝜆𝛽)

𝑛𝑘+
(1−2𝑐)

𝛽 𝑑𝜆
]
 
 
 
 

 

On solving the above expression, we have 

𝑅(�̂�) =
Γ (𝑛𝑘 −

2𝑐

𝛽
+

2

𝛽
+ 1)

�̂�(∑  𝑛
𝑖=1 𝑥𝑖

𝛽
)

2

𝛽
Γ (𝑛𝑘 −

2𝑐

𝛽
+ 1)

+ �̂� −
2Γ (𝑛𝑘 −

2𝑐

𝛽
+

1

𝛽
+ 1)

(∑  𝑛
𝑖=1 𝑥𝑖

𝛽
)

1

𝛽
Γ (𝑛𝑘 −

2𝑐

𝛽
+ 1)

. 

Now to determine the Bayesian estimator, we have 
∂𝑅(�̂�)

∂�̂�
= 0 
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∂

∂�̂�
[

Γ(𝑛𝑘−
2𝑐

𝛽
+

2

𝛽
+1)

�̂�(∑  𝑛
𝑖=1 𝑥

𝑖
𝛽
)

2
𝛽Γ(𝑛𝑘−

2𝑐

𝛽
+1)

+ �̂� −
2Γ(𝑛𝑘−

2𝑐

𝛽
+

1

𝛽
+1)

(∑  𝑛
𝑖=1 𝑥

𝑖
𝛽
)

1
𝛽Γ(𝑛𝑘−

2𝑐

𝛽
+1)

] = 0  (10) 

Remark: Replacing c=1/2 in eq. (10), the same Bayes estimator is got as in eq. (2) equivalent 

to the Jeffrey’s prior 

 

1.5 Quadratic Loss Function (QLF) 

By using quadratic loss function 𝑙𝑞𝑑(�̂�, 𝜆) = (
�̂�−𝜆

𝜆
)
2

the risk function is given by 

𝑅(�̂�) = ∫  
∞

0
(
�̂�−𝜆

𝜆
)
2

𝜋2(𝜆 ∣ 𝑥)𝑑𝜆      (11) 

Using eq. (4) in eq. (11), we have  

𝑅(�̂�) = ∫  
∞

0

(
�̂� − 𝜆

𝜆
)

2 𝑒−�̂�𝛽 ∑  
𝑥𝑖
𝑖=1 𝜆𝑛𝑘𝛽−2𝑐(∑  𝑛

𝑖=1 𝑥𝑖
𝛽
)
𝑛𝑘−

2𝑐

𝛽
+1

Γ (𝑛𝑘 −
2𝑐

𝛽
+ 1)

𝑑𝜆 

Solving the above formula yields. 

𝑅(�̂�) = �̂�2 (∑  

𝑛

𝑖=1

𝑥𝑖
𝛽
)

2

𝛽 Γ (𝑛𝑘 −
2(𝑐+1)

𝛽
+ 1)

Γ (𝑛𝑘 −
2𝑐

𝛽
+ 1)

+ 1 − 2�̂� (∑  

𝑛

𝑖=1

𝑥𝑖
𝛽
)

1

𝛽 Γ (𝑛𝑘 −
(2𝑐+1)

𝛽
+ 1)

Γ (𝑛𝑘 −
2𝑐

𝛽
+ 1)

. 

Now to determine the Bayesian estimator, we have 
∂𝑅(�̂�)

∂�̂�
= 0 

∂

∂�̂�
[
 
 
 �̂�2(∑  𝑛

𝑖=1 𝑥𝑖
𝛽
)

2

𝛽Γ (𝑛𝑘 −
2(𝑐+1)

𝛽
+ 1)

Γ (𝑛𝑘 −
2𝑐

𝛽
+ 1)

+ 1 −
2�̂�(∑  𝑛

𝑖=1 𝑥𝑖
𝛽
)

1

𝛽Γ (𝑛𝑘 −
(2𝑐+1)

𝛽
+ 1)

Γ (𝑛𝑘 −
2𝑐

𝛽
+ 1)

]
 
 
 

= 0 

�̂� =
1

(∑  𝑛
𝑖=1 𝑥𝑖)

[
{Γ(𝑛𝑘−

(2𝑐+1)

𝛽
+1)}

{Γ(𝑛𝑘−
2(𝑐+1)

𝛽
+1)}

]     (12) 

Remark: Exchanging c=1/2 in eq. (12), the same Bayes estimator is got as in eq. (2) 

equivalent to Jeffrey’s prior. 

 

1.6 Estimation of Survival function (SF) 

We may determine the survival function by utilizing the posterior probability density 

function, such that. 

�̂�2(𝑥) = ∫  
∞

0
𝑒−(𝜆𝑥)𝛽𝜋2(𝜆 ∣ 𝑥)𝑑𝜆      (13) 

�̂�1(𝑥) =
(∑  𝑛

𝑖=1 𝑥𝑖
𝛽
)
𝑛𝑘−

2𝑐

𝛽
+1

Γ (𝑛𝑘 −
2𝑐

𝛽
+ 1)

[∫  
∞

0

𝑒−(𝜆𝑥)𝛽𝑒−𝜆𝛽 ∑  𝑛
𝑖=1 𝑥𝑖

𝛽

𝜆𝑛𝑘𝛽−2𝑐𝑑𝜆] 
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Using eq. (4) in eq. (13), we have 

�̂�2(𝑥) = (
∑  𝑛

𝑖=1 𝑥𝑖
𝛽

𝑥
𝑖
𝛽
+∑  𝑛

𝑖=1 𝑥
𝑖
𝛽)

𝑛𝑘−
2𝑐

𝛽
+1

.      (14) 

 

2. SIMULATION STUDY OF GENERALIZED GAMMA DISTRIBUTION 

(GGD) 

With the aid of the R programming language, a simulation study was conducted to examine 

and assess the precision of the estimates for three different sample sizes (n = 25, 50, and 

100), which, respectively, represented a small, medium, and massive data collection. The 

value of the scale parameter for the generalized gamma distribution is calculated using both 

conventional and Bayesian approaches to estimate. We employ Jeffrey's & an extension of 

Jeffrey's former inside the context of the Bayesian technique of estimation while taking 

several loss functions into account. We examined the values of = 1.0, 1.5, & 2.0 while 

figuring out the scales parameter's value. The values of c in Jeffrey's extension were 0.5, 1.0, 

and 1.5. The c1 loss parameter has been determined to have the values 1, -1, 2, and -2. This 

procedure was performed 2,000 times after the scale parameter for each approach was 

calculated. The tables below provide a summary of the findings. 

 

Table 1: Mean Squared Error for  ̂ under Jeffrey’s prior. 

N 𝜆 𝛽 𝜅 𝜆𝑀𝐿 𝜆𝑠𝑙 𝜆𝑁𝐼 

C1=1 C1=-1 C1=2 C1=-2 

25 1.0 0.5 0.5 1.0834 1.0244 1.2256 0.9843 1.1135 0.5734 

1.5 1.0 1.0 0.6857 0.6852 0.6632 0.7305 0.6413 0.7305 

2.0 1.5 1.0 0.6823 0.6810 0.6786 0.6863 0.6760 0.6863 

50 1.0 0.5 0.5 1.1597 1.2941 1.0642 1.0851 1.1223 0.4792 

1.5 1.0 1.0 0.4263 0.4261 0.4152 0.4485 0.4044 0.4485 

2.0 1.5 1.0 0.7523 0.7523 0.7513 0.7544 0.7502 0.7544 

100 1.0 0.5 0.5 1.9086 1.9086 1.9019 1.2507 0.9669 0.1199 

1.5 1.0 1.0 0.8329 0.8329 0.8275 0.8437 0.8222 0.8437 

2.0 1.5 1.0 0.7775 0.7775 0.9631 0.9647 0.7764 0.8081 

 

ML=MaximumProbability,Sl=squared mistakeLF,Pr=defensiveLF,qd=quadraticLF, 

Nl=Al-Bayyati’sLF 
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The Al-loss Bayes estimate in most cases, especially when the loss parameter C1 is set to -2 

in the just-presented table 1, Bayyati's function and Jeffrey's prior produce the minimal 

results. As a result, we may conclude that the Bayes estimator performs well when Al-loss is 

applied the standard estimator and other loss functions are contrasted with Bayyati's function. 

 

Table 2: Mean Squared Error for  ̂ under extension of Jeffrey’s prior. 

N 

 

𝜆 𝛽 𝜅 C 𝜆𝑀𝐿 𝜆𝑠𝑙 𝜆𝑝𝑟 𝜆𝑞𝑑 𝜆𝑁𝐼 

C1=1 C1=-1 C1=2 C1=-2 

25  

1.

0 

 

0.

5 

 

0.

5 

0.5 0.58

38 

0.231

1 

0.295

0 

0.1

948 

0.2628 0.1948 0.308

9 

0.057

1 

1.0 0.77

38 

0.257

8 

0.173

4 

0.3

786 

0.3251 0.1366 0.149

1 

0.089

1 

1.5 0.17

87 

0.186

8 

0.560

1 

0.1

028 

0.3462 0.1028 0.202

2 

0.075

3 

 

1.

5 

 

1.

0 

 

1.

0 

0.5 0.88

79 

0.887

5 

0.866

6 

0.9

304 

0.8456 0.9304 0.804

7 

0.624

1 

1.0 0.81

55 

0.858

6 

0.836

7 

0.9

037 

0.8147 0.9037 0.771

7 

0.461

4 

1.5 0.87

69 

0.963

0 

0.941

1 

1.0

082 

0.9191 0.9883 0.876

1 

0.270

6 

 

2.

0 

 

1.

5 

 

1.

0 

0.5 1.12

71 

1.257

8 

1.329

5 

1.3

889 

1.5483 1.4604 1.271

0 

1.052

5 

1.0 1.40

98 

1.153

5 

1.453

2 

1.4

886 

1.6567 1.2551 1.614

8 

1.075 

1.5 1.33

08 

1.424

2 

1.472

5 

1.2

556 

1.4919 1.2400 1.448

4 

1.027

8 

50  

1.

0 

 

0.

5 

 

0.

5 

0.5 0.92

44 

0.482

2 

0.101

5 

0.4

309 

0.6661 0.4309 1.051

7 

0.189

8 

1.0 0.92

88 

0.233

2 

1.029

2 

0.5

212 

0.2195 0.5212 0.316

0 

0.196

5 

1.5 0.64

07 

0.800

1 

0.109

5 

0.2

509 

0.1676 0.7764 0.278

0 

0.138

2 

   0.5 0.84 0.844 0.833 0.8 0.8230 0.8657 0.802 0.709
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1.

5 

1.

0 

1.

0 

42 1 6 657 0 7 

1.0 1.05

58 

1.075

2 

1.065

5 

1.0

949 

1.0557 1.0949 1.036

1 

0.914

7 

1.5 0.92

52 

0.967

0 

0.956

5 

0.9

883 

0.9460 0.9883 0.925

0 

0.819

8 

 

2.

0 

 

1.

5 

 

1.

0 

0.5 1.85

51 

1.855

1 

1.843

4 

1.8

783 

1.8320 1.8783 1.808

8 

1.636

0 

1.0 1.62

63 

1.651

1 

1.638

8 

1.6

761 

1.6263 1.6761 1.601

7 

1.220

1 

1.5 1.65

36 

1.703

0 

1.690

7 

1.7

281 

1.6783 1.7281 1.653

5 

1.264

1 

10

0 

 

1.

0 

 

0.

5 

 

0.

5 

0.5 1.40

77 

0.508

4 

0.767

6 

0.3

731 

0.1842 0.2499 0.578

5 

0.140

0 

1.0 1.17

79 

0.454

1 

0.219

8 

0.1

993 

0.5784 0.8096 0.101

1 

0.098

2 

1.5 1.75

17 

0.300

1 

0.676

5 

0.7

517 

0.1431 0.5004 0.336

4 

0.132

2 

 

1.

5 

 

1.

0 

 

1.

0 

0.5 0.83

33 

0.833

2 

0.827

8 

0.4

557 

0.8225 0.8440 0.811

8 

0.391

4 

1.0 0.90

41 

0.914

6 

0.909

2 

0.9

251 

0.9041 0.9251 0.893

7 

0.752

5 

1.5 0.88

30 

0.904

3 

0.899

0 

0.9

150 

0.8935 0.9150 0.883

0 

0.743

6 

 

2.

0 

 

1.

5 

 

1.

0 

0.5 1.63

98 

1.639

7 

1.633

6 

1.6

521 

1.6275 1.6521 1.615

3 

1.188

5 

1.0 1.61

23 

1.624

8 

1.618

4 

1.6

370 

1.6123 1.6370 1.599

8 

1.049

7 

1.5 1.54

03 

1.565

4 

1.559

2 

1.5

782 

1.5527 1.5782 1.540

3 

1.125

2 

Generally, especially when loss parameter C1 is -2, Bayes' estimate using Al-loss Bayyati's 

function under extension of Jeffrey's previous yields the lowest values, regardless of whether 

the extension of Jeffrey's prior is 0.5, 1.0, or 1.5, as shown in table 2 above. Particularly when 
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loss parameter C1 is -2, this is true. It follows that Al-loss Bayyati's function provides a 

Bayes estimate that is superior to other loss functions and the conventional estimator. 

 

3. Conclusion:  

Our research focused on both conventional and Bayesian estimating techniques to compute 

the scaling parameter of the generalized gamma distribution. The variances between the 

estimations are examined using the Mean Squared Error (MSE) method, and the results are 

shown in the tables above. Considering the results, the Bayes estimator under Al-loss 

Bayyati's function has the lowest MSE values for both priors (Jeffrey's and the extension of 

Jeffrey's prior), when compared to other loss functions and classical estimation. In most 

instances, this is the case. As a result, we may conclude that the Al-loss Bayyati's function-

based Bayes estimator is efficient when the loss parameter C1 is set to -2. 
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