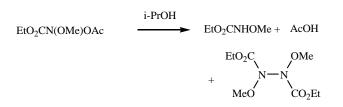


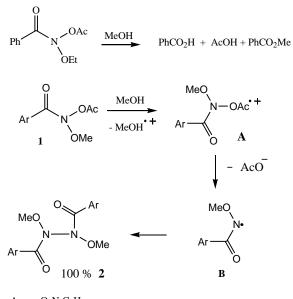
Shtamburg V. Georgievich,^[a] Anishchenko A. Alexandrovich,^[b] Shtamburg V. Vasilievich,^[c] Tsygankov A. Valerievich^[d] and Kostyanovsky R. Grigorievich^[e]


Keywords: Nucleophilic substitution at nitrogen, N-acyloxy-N-alkoxycarbamates, alcoholysis, N,N-dialkoxycarbamates, hydrolysis, NH-N,N-dialkoxyamines.

The alcoholysis of N-acetoxy-N-alkoxycarbamates by methanol or ethanol at 20 - 40 °C yields N,N-dialkoxycarbamates and acetic acid. At the lower temperature the competitive formation of N,N'-bis(alkoxycarbonyl)-N,N'-bis(alkoxy)hydrazines can occur. The alkaline hydrolysis of N,N-dialkoxycarbamates yields NH-N,N-dialkoxyamines.

- * Corresponding Authors Tel.:/Fax: +38(068) 410-41-79 E-Mail: Koloxai@gmail.com
- Ukrainian State Chemico-Technologycal University, 49038 [a] Ukraine, Dnepropetrovsk, Mostovaya st., 2/6.
- [b] Ukrainian State Chemico-Technologycal University, 49010 Ukraine, Dnepropetrovsk, Armeyskaya st. 22
- Ukrainian State Chemico-Technologycal University 61050 [c]
- Ukraine, Kharkov, Moskovsky pr., 31/56. State Flight Academy of National Aviation University, 25013 [d] Ukraine, Kirovograd, 50 Let Octiabrya, 22/127,
- N .N. Semenov Institute of Chemical Physics, Russian [e] Academy of Sciences 119991, Russian Federation, Moscow, Kosygina st. 4.

INTRODUCTION


The nature of the products of the alcoholysis of Nacyloxy-N-alkoxyureas, N-acyloxy-N-alkoxycarbamates, Nacyloxy-N-alkoxybenzamides depends of the electronegativity of third substituent at nitrogen atom in the O-N-O geminal system. N-Acyloxy-N-alkoxyureas¹⁻³ and Nacyloxy-N-alkoxy-N-tert-alkylamines1 yield respectively the N,N-dialkoxyureas and N,N-dialkoxy-N-tert-alkylamines by the alcoholysis. N-Acyloxy-N-alkoxycarbamates convert into N,N-dialkoxycarbamates only by the alcoholysis by primary alcohols.1 The alcoholysis of N-acyloxy-Nalkoxycarbamates by tert-butanol does not take place, probably, due to sterical hindrances to S_N2 nucleophilic substitution at the nitrogen.¹ Isopropanolysis of ethyl Nacetoxy-N-methoxycarbamate results in the formation of reduction products such as N,N'-bis(ethoxycarbonyl)-N,Nbis(methoxy)hydrazine and ethyl *N*-ethoxycarbamate^[1] (Scheme 1).

Scheme 1

Eur. Chem. Bull., 2014, 3(12), 1119-1125

The nature of products of N-acyloxy-N-alkoxobenzamides alcoholysis is strongly depended by of the nature of psubstituent in the phenyl group. Thus, methanolysis of Nacetoxy-N-ethoxybenzamide yields the mixture of methyl benzoate, benzoic and acetic acid,¹ however, as we have found, the methanolysis⁴ of N-acetoxy-N-methoxy-4nitrobenzamide (1) yields only N, N'-bis(methoxy)-N, N'bis(4-nitrobenzoyl)hydrazine (2). Probably, last reaction occurs by a SET mechanism with consecutive formation the anion-radical A, then radical B (Scheme 2).

 $Ar = p - O_2 N - C_6 H_4$

Scheme 2.

N-acyloxy-N-alkoxybenzamides,⁵⁻⁹ N-acyloxy-Nalkoxycarbamates^{1,10,11} and N-acyloxy-N-alkoxyureas^{1,2,10,11} are called "anomeric amides" due to $nO(Alk) \rightarrow \sigma^*N$ -OC(O)Ranomeric effect domination. In RC(=O)O-N-O(Alk) group the amide nitrogen is sp^3 hybridized and has pyramidal configuration, (Alk)O-N bond is shortened and N–OC(=O)R bond is elongated and destabilized.^{2,4,5,7,10,11} Due to this N–OC(=O)R bond destabilization, the S_N 2 nucleophilic substitution at amide nitrogen atom or homolysis of this bond become possible.^{1,5,7}

However, in the case of *N*-acyloxy-*N*-alkoxycarbamates, the influence of their structure on the nature of products of alcoholysis remains unknown. We cannot predict under which conditions the alcoholysis of *N*-acyloxy-*N*alkoxycarbamates by primary alcohols will selectively yield *N*,*N*-dialkoxycarbamates, which are regarded as the potential sources of *NH*-*N*,*N*-dialkoxyamines

EXPERIMENTAL

General

¹HNMR spectra were recorded on a "Varian VXP-300" spectrometer (300 MHz), "Mercury-400" (400 MHz) and "Bruker Avance DRX 500" (500 MHz). Me4Si was used as an internal standard. Chemical shifts were measured in σ-scale (ppm) and coupling constants in Hz. ¹³CNMR spectra were recorded on a "Varian VXP-300" spectrometer (75 MHz). IR spectra were recorded on "UR-20" spectrometer, in KBr or in the thin layer. Mass spectra were recorded on a "VG-70EQ 770" mass spectrometer in FAB mode (FAB) and on "Kratos MS 890" mass spectrometer, electron impact mode (EI) and chemical ionization mode (CI), gas-reagent was isobutane. MeOH and EtOH were dried by refuxing and distillation over metallic calcium.

Metanolysis of N-acetoxy-N-methoxy-4-nitrobenzamide (1)

A solution of (1)⁴ (0.06137 mmol, 0.0156 g) in MeOH (3 ml) was kept at 20 °C for 72 h, then methanol was evaporated *in vacuo* (5 Torr) yielding 0.0120 g (100%) of N,N'-bis(methoxy)-N,N'-bis(4-nitrobenzoyl)hydrazine (**2**) as yellowish white crystals, m.p. 86 – 88 °C (with decomp.). ¹HNMR (400 MHz, CDCl₃): 3.948 (s, 6H, NOMe), 8.206 (d, 4H, H_{C6H4}^{2.6}, ³J = 9.2 Hz), 8.305 (d, 4H, H_{C6H4}^{3.5}, ³J = 9.2 Hz), 8.206 (d, 4H, H_{C6H4}^{2.6}, ³J = 9.2 Hz), 8.329 (d, 4H, H_{C6H4}^{3.5}, ³J = 9.2 Hz). MS (FAB, m/z, I_{0TH}, (%)): 391 [M+H]⁺ (10), 307(88), 289(45), 155(90), 137(96), 79 (100). MS (FAB, Na⁺, m/z, I_{0TH}, (%)): 413 [M+Na]⁺ (10), 329 (100).

Methyl N-ethoxycarbamate (3)

A solution of ethoxyamine (29.06 mmol, 1.78 g) in MeCN (7 ml) was added to the solution of MeO₂CCl (37.77 mmol, 3.57 g) in MeCN (15 ml) at 10 °C, then K₂CO₃ (43.59 mmol, 6.0 g) and 18-crown-6 (0.10 g) were added. The reaction mixture was stirred and heated to 20 °C for 3 h, then it was stored at 20 °C for another 24 h. After that the precipitate was filtered off, washed with CH₂Cl₂, and the combined filtrate was evaporated *in vacuo*. The residue was distillated *in vacuo* yielding 2.49 g (72 %) methyl *N*-ethoxycarbamate, colourless liquid, b.p. 74-79 °C (5 Torr), n_D^{21} 1.4247 (cf. 1.4246¹²) identified by comparison its ¹HNMR spectra with that of an authentic sample.¹² ¹HNMR (300 MHz, CDCl₃):

1.18 (t, 3H, NOCH₂Me, ${}^{3}J = 6.9$ Hz), 3.69 (s, 3H, CO₂Me), 3.85 (q, 2H, NO<u>CH₂Me</u>, ${}^{3}J = 6.9$ Hz), 7.40 (br. s, 1H, NH). IR (v, cm⁻¹, KBr): 3430 (NH), 1740 (C=O).

Other N-alkoxycarbamates were synthesized in a similar manner.

Methyl *N*-isopropyloxycarbamate (4), yield 78%, colourless liquid, b.p. 87-88 °C (10 Torr), n_D^{27} 1.4237. ¹H NMR (300 MHz, CDCl₃): 1.15 (d, 6H, OCH<u>Me₂</u>, ³*J* = 6.3 Hz), 3.68 (s, 3H, CO₂Me), 3.98 (sept, 1H, O<u>CH</u>Me₂, ³*J* = 6.3 Hz), 7.33 (br. s, 1H, NH). IR (v, cm⁻¹, KBr): 3310 (NH), 1745 (C=O). Found (%): N 10.68. Calc. for C₅H₁₁NO₃ (%): N 10.52.

Methyl *N-n*-butyloxycarbamate (5), yield 76 %, colourless liquid, b.p. 105-107 °C (5 Torr), n_D^{22} 1.4312. ¹H NMR (300 MHz, CDCl₃): 0.94 (t, 3H, OCH₂CH₂CH₂Me, ³J = 7.2 Hz), 1.40 (sex, 2H, OCH₂CH₂CH₂Me, ³J = 7.2 Hz), 1.63 (quint, 2H, OCH₂CH₂CH₂Me, ³J = 7.2 Hz), 3.77 (s, 3H, CO₂Me), 3.87 (T, O<u>CH₂CH₂CH₂CH₂Me, ³J = 7.2 Hz), 7.47 (br. s, 1H, NH). Found (%): N 9.31. Calc. for C₆H₁₃NO₃ (%): N 9.52.</u>

Ethyl *N*-isopropyloxycarbamate (6), yield 67 %, colourless liquid, b.p. 68°C (2 Torr), n_D^{20} 1.4255. ¹HNMR (300 MHz, CDCl₃): 1.22 (d, 6H, OCH<u>Me₂</u>, ³*J* = 6.3 Hz), 1.27 (t, 3H, CO₂CH₂<u>Me</u>, ³*J* = 7.2 Hz), 4.05 (sept, 1H, O<u>CH</u>Me₂, ³*J* = 6.3 Hz), 4.19 (q, 2H, CO₂CH₂Me, ³*J* = 7.2 Hz). Found (%): N 9.43. Calc. for C₆H₁₃NO₃ (%): N 9.52.

General method for the synthesis of *N*-chloro-*N*-alkoxycarbamates

A solution of *t*-BuOCl (15 mmol) in CH₂Cl₂ (3 ml) was added to the solution of the alkyl *N*-alkoxycarbamate (5 mmol) in CH₂Cl₂ (6 ml) at -20 °C, the reaction solution was kept at 5 °C for 2 h, then it was evaporated *in vacuo* (10 Torr), the residue was kept at 3 Torr for 5 min. The yields were quantitative.

Methyl *N*-chloro-*N*-ethoxycarbamate (7), yellowish oil. ¹HNMR (300 MHz, CDCl₃): 1.31 (t, 3H, NOCH₂Me, ${}^{3}J = 6.9$ Hz), 3.92 (s, 3H, CO₂Me), 4.07 (q, 2H, NO<u>CH₂Me</u>, ${}^{3}J = 6.9$ Hz). IR (v, cm⁻¹, thin layer): 1795 (C=O). Found(%): Cl 22.85. Calc. for C₄H₈ClNO₃ (%): Cl 23.09.

Methyl *N*-chloro-*N*-isopropyloxycarbamate (8), yellow oil. ¹HNMR (300 MHz, CDCl₃): 1.28 (d, 6H, NOCH<u>Me₂</u>, ³*J* = 6.3 Hz), 3.91 (s, 3H, CO₂Me), 4.31 (sept, 1H, NOC<u>H</u>Me₂, ³*J* = 6.3 Hz). IR (v, cm⁻¹, thin layer): 1780 (C=O). Found (%): Cl 21.04. Calc. for C₅H₁₀ClNO₃ (%): Cl 21.15

Methyl *N*-chloro-*N*-*n*-butyloxycarbamate (9), yellowish oil, n_D^{25} 1.4383. ¹H NMR (300 MHz, CDCl₃): 0.95 (t, OCH₂CH₂CH₂CH₂Me, ³J = 7.3 Hz), 1.45 (sex, 2H, OCH₂CH₂CH₂Me, ³J = 7.3 Hz), 1.57 (quint, 2H, OCH₂CH₂CH₂Me, ³J = 7.3 Hz), 3.90 (s, 3H, CO₂Me), 3.97 (t, 2H, O<u>CH₂CH₂CH₂CH₂Me, ³J = 7.3 Hz</u>). Found (%): Cl 19.16. Calc. for C₆H₁₂ClNO₃ (%): Cl 19.52.

Ethyl N-chloro-N-isopropyloxycarbamate (10), yellowish oil. ¹H NMR (300 MHz, CDCl₃): 1.28 (d, 6H, NOCH<u>Me₂</u>, ${}^{3}J = 6.3$ Hz), 1.36 (t, 3H, CO₂CH₂<u>Me</u>, ${}^{3}J = 7.0$

Hz), 4.31 (sept, 1H, NOC<u>H</u>Me₂, ${}^{3}J = 6.3$ Hz), 4.33 (q, 2H, CO₂C<u>H₂</u>Me, ${}^{3}J = 7.0$ Hz). Found (%): Cl 19.46. Calc. C₆H₁₂ClNO₃ (%): Cl 19.52.

General method for the synthesis of N-acetoxy-N-alkoxycarbamates

A mixture of the solution of *N*-chloro-*N*-alkoxycarbamate (8 mmol) in MeCN (20 ml) and AcONa (26 mmol) was stirred at 20 °C for 55 h, then CH_2Cl_2 (10 ml) was added, the precipitate was filtered off, washed with CH_2Cl_2 , the combined filtrate was evaporated *in vacuo* (20 Torr). The residue was extracted by CH_2Cl_2 (20 ml), the extract was evaporated *in vacuo*, the residue was kept at 3 Torr and 20 °C for 30 min to yield the product.

Methyl *N*-acetoxy-*N*-ethoxycarbamates (11), yield 87 %, colourless liquid, n_D^{19} 1.4269. ¹HNMR (300 MHz, CDCl₃): 1.30 (t, 3H, NOCH₂Me, ³*J* = 7.2 Hz), 2.19 (s, 3H, NOC(O)Me), 3.88 (s, 3H, CO₂Me), 4.13 (q, 2H, NO<u>CH₂Me</u>, ³*J* = 7.2 Hz). IR (v, cm⁻¹, thin layer): 1805 (C=O), 1780 (C=O). Found (%): C 40.41, H 6.31, N 7.78. Calc. for C₆H₁₁NO₅ (%): C 40.68, H 6.26, N 7.91.

Methyl *N*-acetoxy-*N*-isopropyloxycarbamate (12), yield 96 %, yellowish liquid. ¹HNMR (300 MHz, CDCl₃): 1.28 (d, 6H, OCH<u>Me</u>₂, ³*J* = 6.3 Hz), 2.17 (s, 3H, NOC(O)Me), 3.87 (s, 3H, CO₂Me), 4.32 (sept, 1H, O<u>CH</u>Me₂, ³*J* = 6.3 Hz). IR (v, cm⁻¹, thin layer): 1805 (C=O), 1780 (C=O). MS (CI, *m/z*, I_{rel}, (%)): 192 [M+H]⁺ (0.6), 191 M⁺ (1.5), 148 (4.0), 132 (3.1), 59 (23.9), 45 (20.4), 43 (100). Found (%): C 43.81, H 6.82, N 7.18. Calc for C₇H₁₃NO₅ (%): C 43.98, H 6.85, N 7.33.

Methyl *N*-acetoxy-*N*-*n*-butyloxycarbamate (13), yield 81 %, yellowish liquid. ¹HNMR (300 MHz, CDCl₃): 0.95 (t, 3H, NO(CH₂)₃<u>Me</u>, ³*J* = 7.5 Hz), 1.41 (sex, 2H, NOCH₂CH₂CH₂Me, ³*J* = 7.5 Hz), 1.66 (quint, 2H, NOCH₂CH₂CH₂Me, ³*J* = 7.5 Hz), 2.19 (s, 3H, NOC(O)Me), 3.88 (s, 3H, CO₂Me), 4.08 t (2H, NO<u>CH₂CH₂CH₂CH₂Me, ³*J* = 7.5 Hz). IR (v, cm⁻¹, thin layer): 1805 (C=O), 1780 (C=O). Found (%): C 46.68, H 7.34, N 6.79. Calc. for C₈H₁₅NO₅ (%): C 46.83, H 7.38, N 6.83.</u>

Ethyl N-acetoxy-N-isopropyloxycarbamate (14), yield 98 %, yellowish liquid, n_D^{22} 1.4211. ¹HNMR (300 MHz, CDCl₃): 1.28 (d, 6H, OCH<u>Me₂</u>, ³*J* = 6.3 Hz), 1.33 (t, 3H, CO₂CH₂<u>Me</u>, ³*J* = 7.2 Hz), 2.17 (s, 3H, NOC(O)Me), 4.30 (q, 2H, CO₂C<u>H₂Me</u>, ³*J* = 7.2 Hz), 4.33 (sept, 1H, NOC<u>H</u>Me₂, ³*J* = 6.3 Hz). MS (CI, *m*/*z*, *I*_{rel}, (%)): 206 [M+H]⁺ (2.0), 204 (0.6), 132 (100). Found (%): C 46.61, H 7.35, N 6.59. Calc. for C₈H₁₅NO₅ (%): C 46.82, H 7.37, N 6.83.

Methyl *N*-ethoxy-*N*-methoxycarbamate (15). Methyl *N*-acetoxy-*N*-ethoxycarbamate 11 (2.442 mmol, 0.432 g) was dissolved in MeOH (5 ml) at -12°C, the solution was heated to 0°C for 3 h, then it was kept at 24 °C for 44 h. Then it was evaporated *in vacuo* (2 Torr) yielding 0.248 g (68%) methyl *N*-ethoxy-*N*-methoxycarbamate (15), which was contaminated with some *N*,*N*'-bis(ethoxy)-*N*,*N*'-bis(methoxycarbonyl)hydrazine¹² (16) according to ¹HNMR. After distillation *in vacuo* 0.080 g (22 %) pure (15) was obtained as colourless liquid. ¹HNMR (300 MHz, CDCl₃): 1.33 (t, 3H, NOCH₂Me, ³J = 7.0 Hz), 3.84 (s, 3H, NOMe),

3.90 (s, 3H, CO₂Me), 4.11 (q, 2H, NO<u>CH₂Me</u>, ${}^{3}J$ = 7.0 Hz). Found (%): C 40.55, H 7.35. Calc. for C₅H₁₁NO₄ (%): C 40.27, H 7.43.

Ethanolysis of methyl *N*-acetoxy-*N*-ethoxycarbamate (11) at 4°C. Methyl *N*-acetoxy-*N*-ethoxycarbamate (11) (6.960 mmol, 1.232 g) was dissolved in EtOH (12 ml) at 4°C, this solution was kept at 4 - 5°C for 94 h, then it was evaporated *in vacuo*, yielding 1.1986 g of a yellowish liquid. According to ¹HNMR this residue is a mixture of unreacted (11) and *N*,*N*'-bis(ethoxy)-*N*,*N*'-bis(methoxycarbonyl)hydrazine¹² (16) in molar ratio 97:3. ¹H NMR of hydrazine (16) (300 MHz, CDCl₃): 1.31 (t, 6H, NOCH₂Me, ³J = 7.2 Hz), 3.91 (3, 6H, CO₂Me), 4.05 (q, 4H, NO<u>CH₂Me</u>, ³J = 7.2 Hz). On keeping of the solution of (11) in EtOH at 4 - 5 °C for 163 h, the ratio of compounds (11) and (16) became 63:37.

Ethanolysis of methyl *N*-acetoxy-*N*-ethoxycarbamate (11) at 18 °C. Methyl *N*-acetoxy-*N*-ethoxycarbamate (11) (6.766 mmol, 1.199 g) was dissolved in EtOH (12 ml) at 18°C, this solution was kept at 17 – 18 °C for 219 h, then it was evaporated *in vacuo* (8 Torr), the residue was kept at 2 Torr and 20 °C yielding 0.563 g (51 %) methyl *N*,*N*-diethoxycarbamate (17), colourless liquid, b.p. 46-47 °C(2 Torr), n_D^{25} 1.4139. ¹HNMR (300 MHz, CDCl₃): 1.30 (t, 6H, NOCH₂<u>Me</u> ³*J* = 7.2 Hz), 3.87 (s, 3H, CO₂Me), 4.07 (q, 4H, NO<u>CH₂Me</u>, ³*J* = 7.2 Hz). ¹³CNMR (75 MHz, CDCl₃): 13.40 (NOCH₂<u>Me</u>), 54.25 (NO<u>CH₂</u>Me); 69.86 (CO₂<u>Me</u>), 159.84 (C=O). MS (EI, *m*/*z*, *I*_{rel}.(%)): 164 [M+H]⁺ (0.4), 163 M⁺ (2.0), 118 (1.7), 105 (3.1), 104 (2.7), 59 (59.8), 43 (100). Found (%): C 44.08, H 8.14, N 8.51. Calc. for C₆H₁₃NO₄ (%): C 44.17, H, 8.03, N 8.58.

Methyl *N*-isopropyloxy-*N*-metoxycarbamate (18). Methyl N-acetoxy-N-isopropyloxycarbamate (12) (8.68 mmol, 1.66 g) was dissolved in MeOH (21 ml) and kept at -32 °C, for 4 h, the solution was then heated to 20 °C and was kept at 20 °C for 7 days. The solution was then evaporated in vacuo (20 Torr). MeOH-condensate was trapped. The residue was distillated in vacuo yielding 0.86 g (60.4 %) methyl N-isopropyloxy-N-metoxycarbamate (18), colourless liquid, b.p. 50-53 °C (3 Torr), *n*_D²³ 1.4168. IR (v, cm⁻¹, thin layer): 1770 (C=O). ¹HNMR (300 MHz, CDCl₃): 1.29 (α , 6H, OCH<u>Me₂</u>, ³J = 6.3 Hz), 3.77 (s, 3H, NOMe), 3.86 (s, 3H, CO₂Me), 4.27 (sept, 1H, OC<u>H</u>Me₂, ${}^{3}J = 6.3$ Hz). MS (EI, 70 Ev, m/z, I_{0TH} (%)): 163 M⁺ (3.4), 105 (5.6), 91 (14.0), 60 (21.3), 59 (54.8), 58 (24.3), 46 (16.9), 45 (36.7), 44 (21.3), 43 (100). Found (%): C 44.23, H 8.17, N 8.42. Calc. for C₆H₁₃NO₄ (%): C 44.17, H 8.03, N 8.58.

In the MeOH-condensate 0.076 g (9.7 %) of dimethylcarbonate was found by GLC.

Methyl *N-n*-butyloxy-*N*-methoxycarbamate (19). Methyl *N*-acetoxy-*N*-*n*-butyloxycarbamate (13) (7.718 mmol, 1.584 g) was dissolved in MeOH (11 ml), the solution was kept at 18°C for 148 h, then MeOH was evaporated *in vacuo* (20 Torr) and the MeOH-condensate was collected in a cold trap. The residue was kept at 20 °C and 3 Torr for 1 h yielding 1.122 g (82.3%) of methyl *N*-*n*-butyloxy-*N*-methoxycarbamate (19), colourless liquid, ¹HNMR (300 MHz, CDCl₃): 0.95 (t, 3H, NO(CH₂)₃<u>Me</u>, ³*J* = 7.2 Hz), 1.45 (sex, 2H, NO(CH₂)₂<u>CH</u>₂Me, ³*J* = 7.2 Hz), 1.90 (s, 6H, ³*J* = 7.2 Hz), 3.90 (s, 6H, ³*J* = 7.2 Hz), 3.90 (s, 6H, ³*J* = 7.2 Hz), 1.65 NOMe and CO₂Me), 3.97 (t, 2H, NOCH₂, ${}^{3}J$ = 7.2 Hz). IR (v, cm⁻¹, thin layer): 1780 (C=O). MS (EI, *m/z*, *I*_{rel} (%)): 177 M⁺ (3.8), 150 (76.7), 149 (87.6), 146 (40.9), 118 (14.6), 115 (9.7), 105 (29.1), 91 (57.5), 90 (52.1), 60 (64.9), 59 (100), 58 (22.1), 57 (76.5). Found (%): C 47.29, H 8.39, N 7.64. Calc. for C₇H₁₅NO₄ (%): C 47.45, H 8.53, N 7.90.

In the MeOH-condensate 0.0028 g (0.4 %) of dimethylcarbonate was found by GLC.

Ethyl *N*-ethoxy-*N*-isopropyloxycarbamate (20). Α solution of ethyl *N*-acetoxy-*N*-isopropyloxycarbamate (14) (0.817 mmol, 0.168 g) in EtOH (2 ml) was kept at 20 °C for 66 h, then at 40 °C for 57 h. Then it was evaporated in vacuo (13 Torr) and EtOH-condensate was caught in a cold trap. The residue was kept at 20 °C and 2 Torr for 20 min yielding 0.097 g (62.2%) of ethyl N-ethoxy-Nisopropyloxycarbamate (20), colourless liquid, ¹HNMR (300 MHz, CDCl₃): 1.276 (t, 3H, NOCH₂Me, ${}^{3}J = 7.2$ Hz), 1.278 (d, 6H, NOCH<u>Me₂</u>, ${}^{3}J = 6.3$ Hz), 1.34 (t, CO₂CH₂<u>Me</u>, ${}^{3}J =$ 7.2 Hz), 4.04 (q, 2H, NO<u>CH₂</u>Me, ${}^{3}J = 7.2$ Hz), 4.26 (sept, 1H, NO<u>CH</u>Me₂, ${}^{3}J = 6.3$ Hz), 4.27 (q, 2H, CO₂<u>CH₂</u>Me, ${}^{3}J =$ 7.2 Hz). MS (FAB, K⁺, m/z, I_{rel} (%)): 230 [M+K]⁺ (6), 215 (5), 192 [M+H]⁺ (100), 176 (10). Found (%): N 7.05. Calc. for C₈H₁₇NO₄ (%): N 7.32.

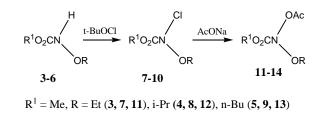
In the EtOH-condensate 0.023 g (23.4 %) of diethylcarbonate was found by GLC.

NH-N-Methoxy-N-n-octyloxyamine (22). A sodium methylate solution, prepared by dissolving Na (13.82 mmol, 0.318 g) in MeOH (20 ml), was added to the solution of methyl N-methoxy-N-n-octyloxycarbamate $(21)^1$ (6.910 mmol, 1.612 g) in MeOH (20 ml) The reaction mixture was kept at 18-20 °C for 7 h, then a solution of acetic acid (17.275 mmol, 1.04 g) in MeOH (7 ml) was added. The precipitate was filtered off, washed with MeOH, the combined MeOH-filtrate evaporated in vacuo (20 Torr). The residue was extracted by hexane (23 ml), the extract was evaporated in vacuo (20 Torr). The residue was kept at 20°C and 2 Torr for 30 min yielding 1.148 g (94.8 %) NH-Nmethoxy-*N*-*n*-octyloxyamine (22),colourless liquid, ¹HNMR (300 MHz, CDCl₃): 0.82 (t, 3H, NO(CH₂)₇Me, ${}^{3}J =$ 6.9 Hz), 1.12-1.35 (m, 10H, NOCH₂CH₂(CH₂)₅Me), 1.52 (quint, 2H, NOCH₂<u>CH₂</u>, ${}^{3}J = 6.9$ Hz), 3.62 (s, 3H, NOMe), 3.80 (t, 2H, NOCH₂, ${}^{3}J = 6.9$ Hz), 7.80 (br. s, 1H, NH). Found (%): N 7.72. Calc. for C₉H₂₁NO₂ (%): N 7.99.

NH-N-n-Butyloxy-N-methoxyamine (23). The mixture of a solution of methyl N-n-butyloxy-N-methoxycarbamate (19) (2.240 mmol, 0.397 g) in Et₂O (4 ml) and a solution of NaOH (3.360 mmol, 0.134 g) in water (16 ml) was stirred at 20 °C for 1 h, then it was extracted by Et₂O (25 ml). The extract was dried over MgSO4 and after that it was evaporated in vacuo. The residue was kept at 5 Torr and 20 °C for 1 h to yield 0.253 g (94.5 %) NH-N-n-butyloxy-Nmethoxyamine 23, colourless liquid, ¹HNMR (300 MHz, CDCl₃): 0.95 (t, 3H, NO(CH₂) $_{3}Me$, $^{3}J = 7.2$ Hz), 1.41 (sextett, 2H, NOCH₂CH₂CH₂Me, $\frac{3}{J}$ = 7.2 Hz), 1.63 (quint, 2H, NOCH₂CH₂CH₂Me, ${}^{3}J = 7.2$ Hz), 3.78 (s, 3H, NOMe), 3.87 (t, 2H, NOCH₂, ${}^{3}J$ = 7.2 Hz), 7.36 (br. s, 1H, NH). MS (EI, m/z, I_{rel} (%)): 120 [M+H]⁺ (1.2), 119 M⁺ (6.1), 118 (1.9), 88 (2.1), 72 (14.7), 57 Bu⁺ (81.2), 56 (53.4), 46 (21.7), 44 (31.2), 43 (100). Found (%): C 50.25, H 11.17, N 11.72. Calc. for C₅H₁₃NO₂ (%): C 50.40, H 11.00, N 11.75.

methyl **Hvdrolvsis** of N-isopropyloxy-Nmetoxycarbamate (18). A mixture of a solution of methyl *N*-isopropyloxy-*N*-metoxycarbamate (18) (6.429 mmol, 1.049 g) in Et_2O (7 ml) and that of NaOH (12.858 mmol, 0.51 g) and 15-crown-5 (0.15 g) in water (26 ml) was stirred at 25 °C for 1 h, and then Et₂O (15 ml), acetic acid (11.66 mmol, 0.7 g) and water (2 ml) were added. The ether extract was separated, the aqueous phase was extracted with another 15 ml of Et₂O. Combined ether extract was dried over MgSO₄, and concentrated by removing of 3/4 of the ether (the bath temperature must be lower than 45 °C). The residue was condensed in two cold traps at different regime in vacuo:

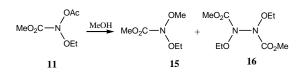
(1) at 55 Torr and 35 °C to yield 0.176 g (26.0 %) *NH-N*isopropyloxy-*N*-methoxyamine (**24**), colourless liquid. ¹H NMR (300 MHz, CDCl₃): 1.21 (d, 6H, NOCH<u>Me</u>₂, ${}^{3}J = 6.3$ Hz), 3.,66 (s, 3H, NOMe), 4.15 (септ, 1H, NO<u>CH</u>Me₂, ${}^{3}J = 6.3$ Hz), 7.87 (br. s, 1H, NH). Found (%): N 13.03. Calc. for C₄H₁₁NO₂ (%): N 13.32.


(2) at 3 Torr and 26 °C to yield 0.367 g (54.8 %) *N*,*N*'bis(isopropyloxy)-*N*,*N*'-bis(methoxy)hydrazine (25), colourless liquid, ¹HNMR (300 MHz, CDCl₃): 1.224 (d, 12H, NOCH<u>Me</u>₂, ³*J* = 6.3 Hz), 3.68 (s, 6H, NOMe), 4.17 (sept, 2H, NO<u>CH</u>Me₂, ³*J* = 6.3 Hz). MS (EI, *m*/*z*, *I*_{rel} (%)): 209 [M+H]⁺ (0.4), 208 M⁺ (2.0), 207 (0.9), 177 (2.2), 105 (3.4), 104 (14.7), 60 (10.7), 59 (39.8), 58 (55.7), 46 (10.3), 45 (58.7), 44 (78.1), 43 (100). Found (%): N 13.34. Calc. for C₈H₂₀N₂O₄ (%): N 13.45.

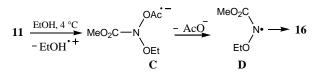
NH-N,N-diethoxyamine (26). The mixture of a solution of methyl *N,N*-diethoxycarbamate (17) (2.542 mmol, 0.415 g) in Et₂O (2 ml) and that of NaOH (7.62 mmol, 0.31 g) and 15-crown-5 (0.06 g) in water (5 ml) was stirred at 20 °C for 2 h, then a solution of acetic acid (7.62 mmol, 0.457 g) in Et₂O (10 ml) was added. The ether layer was separated, the aqueous phase was extracted with Et₂O (6 ml). The combined ether extract was dried over MgSO₄. The extract was concentrated by evaporation (the bath temperature must be lower than 50 °C). The residue was recondensed in cold trap *in vacuo* (67 Torr) at 72 °C yielding 0.0141 g (5.2 %) *NH-N,N*-diethoxyamine (26), colourless liquid, ¹H NMR (300 MHz, CDCl₃): 1.23 (t, 6H, NOCH₂Me, ³J = 7.0 Hz), 3.93 (q, 4H, NO<u>CH₂Me</u>, ³J = 7.0 Hz), 7.95 (br. s, 1H, NH).

RESULTS AND DISCUSSION

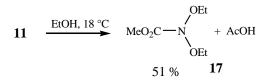
The major objective of this work was to study the alcoholysis of *N*-acetoxy-*N*-alkoxycarbamates and to explore of the possibility of synthesis of *NH-N,N*-dialkoxyamines from methyl *NH-N,N*-dialkoxycarbamates. The last-named compounds may become useful synthones in organic synthesis but as of now only one method of their preparation is known.^{13,14}


We have synthesized *N*-alkoxycarbamates (**3-6**) which were chlorinated to *N*-chloro-*N*-alkoxycarbamates (**7-10**) by *tert*-butyl hypochlorite in CH₂Cl₂ solution (Scheme 3). *N*-Chloro-*N*-alkoxycarbamates react with anhydrous AcONa in MeCN selectively yielding *N*-acetoxy-*N*-alkoxycarbamates (**11-14**).

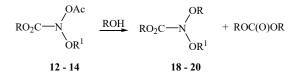
 $R^1 = Et, R = i-Pr (6, 10, 14)$


Scheme 3.

We found that methyl *N*-acetoxy-*N*-ethoxycarbamate, (11) is converted mainly to methyl *N*-ethoxy-*N*-methoxycarbamate (15) by the methanolysis at 24 °C. A by-product of this methanolysis is N,N'-bis(ethoxy)-N,N'-bis(methoxycarbonyl)hydrazine¹² (Scheme 4).

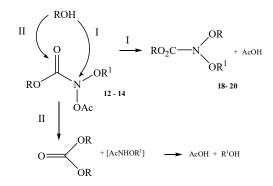


A study of ethanolysis of (11) showed that at 4 - 5 °C the nucleophilic substitution at nitrogen does not occur. On keeping of a solution of (11) in ethanol at 4 - 5 °C for 94 h, a mixture of unreacted (11) (main component, 97 mol. %) and N, N'-bis(ethoxy)-N, N'-bis(methoxycarbonyl)hydrazine (16) (3 mol. %) was obtained. On keeping the solution for 163 h, the ratio of unreacted (11) and the hydrazine (16) is The presence of methyl N,N-63:37 mol.%. diethoxycarbamate (17) in reaction mixture was not detected. It may be supposed that at this temperature an S_N2 nucleophilic substitution at nitrogen atom of (11) is impossible. But (11) is slowly reduced by ethanol to the anion-radical C by a SET mechanism (Scheme 5). Then the anion-radical C loses an acetate ion and forms radical D which couples to yield N,N'-bis(ethoxy)hydrazine (16).

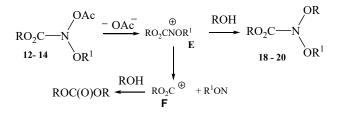


But if ethanolysis of (11) is carried out at 17-18 °C, the $S_N 2$ nucleophilic substitution at nitrogen occurs yielding methyl *N*,*N*-diethoxycarbamate 17 (Scheme 6).

Scheme 6.


Methanolysis of N-acetoxy-N-alkoxycarbamate (12,13) at 20-23°C and of (14) at 40 °C yields alkyl N,N-dialkoxycarbamates (18-20) and AcOH as main products (Scheme 7, Table 1). Dialkylcarbonates are by-products of these cases of alcoholysis.

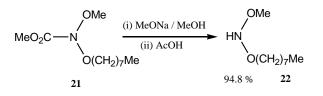
Scheme 7.


In the case of sterically hindered ethyl N-acetoxy-N-isopropoxycarbamate (14) the ethanolysis occurs more slowly than the methanolysies of N-acetoxy-N-alkoxycarbamates (12, 13).

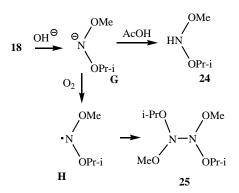
On keeping of an ethanolic solution of (14) at 20 °C for 66 h, the molar ratio of unreacted (14) and product, *N*-ethoxy-*N*-isopropoxycarbamate (20) is 63:37. The complete alcoholysis take place only after keeping it at 40°C for additional 57 h yielding methyl *N*-ethoxy-*N*-isopropoxycarbamate (20) as main product (Table 1). The yield of by-product, diethylcarbonate is also quite high. Probably, the two competitive reactions take place simultaneously, the nucleophilic substitution at nitrogen by S_N2 mechanisn (route I) yielding *N*,*N*-dialkoxycarbamates (18-20) and a nucleophilic attack of the alcohol on carbonyl group (route II) yielding dialkylcarbonate (Scheme 8).

Scheme 8

On other hand, the alcoholysis products formation may also arises through generation of *N*-alkoxyntrenium cation, **E** (Scheme 9), which reacts with alcohol yielding *N*,*N*-dialkoxycarbamates (**18-20**). The further fragmentation caution **E** to more stable acyl cation **F**, which finally yields the dialkylcarbonate.

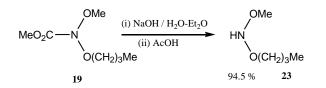


Scheme 9.

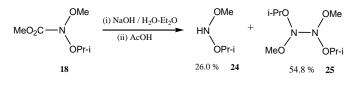

Table 1	. Yields of	f products of	alcoholysis o	f N-acetoxy-N-	alkoxycarbamate 12-14	
---------	-------------	---------------	---------------	----------------	------------------------------	--

No.	RO ₂ CN(OR ¹)OAc		ROH	Temp., °C	Time, h	RO ₂ CN(OR ¹)OR		ROC(O)OR
	R	\mathbb{R}^1				R	Yield, %	Yield, %
12	Me	i-Pr	MeOH	20	164	Me (18)	60.4	9.7
13	Me	n-Bu	MeOH	21-23	120	Me (19)	82.3	0.4
14	Et	i-Pr	EtOH	(a) 20 (b) 40	66 57	Et (20)	62.2	23.4

In methyl *N*,*N*-dialkoxycarbamates, MeOC(O)-group can be easily eliminated by hydrolysis or alkoholysis in the presence of alkali to yield the particular *NH-N*,*N*dialkoxyamines. But in every case the suitable reaction conditions must be carefully selected. Thus, methyl *N*methoxy-*N*-*n*-octyloxycarbamate (**21**)¹ yields *NH-N*methoxy-*N*-*n*-octyloxyamine (**22**) by treatment of MeONa solution in methanol then by action of acetic acid (Scheme 10).

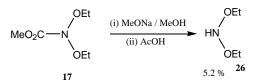


Probably, in this case (Scheme 13) the initially generated anion **G** may be protonated to unstable (24) or may undergo aerial oxidation to a relatively stable dialkoxyaminyl radical **H** which dimerises¹⁵ to (25).


Scheme 10

The hydrolysis of methyl *N-n*-butyloxy-*N*-methoxycarbamate (**19**) by 1.5 eqivalent of NaOH in the water solution in the presence of ether (4:1) at 20° C for 1 h selectively yields *NH-N-n*-butyloxy-*N*-methoxyamine **23** (Scheme 11).

Scheme 11


The alkaline hydrolysis of methyl *N*-isopropyloxy-*N*-metoxycarbamate (**18**) occurs with the formation two main products, unstable *NH-N*-isopropyloxy-*N*-methoxyamine (**24**) and *N*,*N*'-bis(isopropyloxy)-*N*,*N*'-bis(methoxy)hydrazine (**25**) (Scheme 12).

Scheme 13

NH-N,N-Diethoxyamine (**26**) was obtained in low yield by alkaline hydrolysis of methyl *N,N*-diethoxycarbamate (**17**) (Scheme 14). Probably the further rapid decomposition of (**17**) occurs in these reaction conditions.

Scheme 14

The structure of *NH-N*,*N*-dialkoxyamines (**22-24** and **26**) and *N*,*N*,*N*',*N*'-tetraalkoxyhydrazine (**25**) was confirmed by their ¹HNMR spectra, the structure of compounds (**23**) and (**25**) were confirmed by mass spectra also. In ¹HNMR spectra of (**22-24**) and (**26**), the characteristic signal of NH-proton as the broad singlet in field of 7.36 -7.95 ppm was observed.

Thus it was established that alcoholysis of N-acetoxy-Nalkoxycarbamates by methanol or ethanol at $20 - 40^{\circ}$ C yields *N*,*N*-dialkoxycarbamates and acetic acid. At the lower temperature the competitive formation of *N*,*N*²dialkoxycarbonyl-*N*,*N*²-dialkoxyhydrazines can occur. It was found that alkaline hydrolysis of *N*,*N*dialkoxycarbamates yields *NH*-*N*,*N*-dialkoxyamines.

ACKNOWLEDGEMENTS

This work was supported by the Russian Foundation for Basic Research (grant no. 13-03-90460) and Ukrainian Foundation for Fundamental Research (grant no. F-53/105-2013).

REFERENCES

- ¹Shtamburg, V. G., Klots, E. A., Pleshkova, A. P., Avramenko, V. I., Ivonin, S. P., Tsygankov, A. V., Kostyanovsky, R. G., *Russ. Chem. Bull*, **2003**, *52*, 2251 2260.
- ²Shtamburg, V. G., Shishkin, O. V., Zubatyuk, R. I., Kravchenko, S. V., Shtamburg, V. V., Distanov, V. B., Tsygankov, A. V., Kostyanovsky, R. G., *Mendeleev Commun.*, **2007**, *17*, 178 – 180.
- ³Shtamburg, V. G., Anichshenko, A. A., Shtamburg, V. V., Tsygankov, A. V., Mazepa, A. V., Kostyanovsky, R. G., *Eur. Chem. Bull.*, **2014**, *3*, 869 – 872.
- ⁴Shtamburg, V. G., Tsygankov, A. V., Shishkin, O. V., Zubatyuk, R. I., Uspensky B. V., Shtamburg, V. V., Mazepa, A. V., Kostyanovsky, R. G., *Mendeleev Commun.*, **2012**, 22, 164-166.

⁵Glover, S. A., *Tetrahedron*, **1998**, *54*, 7229-727.

⁶Gerdes, R. G., Glover, S. A., ten Have, J. F., Rowbottom, C. A., *Tetrahedron Lett.*, **1989**, *31*, 5377 – 5380.

- ⁷Glover, S. A. Chapter 18. "N-Heteroaton-substituted hydroxamic esters" in "The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids", Rappoport Z. and Liebman J. F. (Ed), John Wiley & Sons, Ltd, 2009.
- ⁸Gillson, A-M. E., Glover, S. A., Tucker, D. J., Turner, P., Org. Biomol. Chem., **2003**, *1*, 3430 – 3437.
- ⁹Cavanach, K. L., Glover, S. A., Price, H. L. Schumacher, R. R., Aust. J. Chem., **2009**, 62, 700 – 710.
- ¹⁰Shishkin, O. V., Zubatyuk, R. I., Shtamburg, V. G., Tsygankov, A. V., Klots, E. A., Mazepa, A. V., Kostyanovsky, R. G., *Mendeleev Commun.*, **2006**, *16*, 222 – 223.
- ¹¹Shishkin, O. V., Shtamburg, V. G., Zubatyuk, R. I., Olefir, D. A., Tsygankov, A. V., Prosyanik, A. V., Mazepa, A.V., Kostyanovsky, R. G., *Chirality*, **2009**, *21*, 642 – 647.
- ¹²Crawford, R. J., Raaf, R., J. Org. Chem., **1963**, 28, 2419 2424.
- ¹³Rudchenko, V. F., Shevchenko, V. I., Ignatov, S. M., Kostyanovsky, R. G., Bull. Acad. Sci. Div. Chem. Sci., 1983, 32, 2174.
- ¹⁴Rudchenko, V. F., Shevchenko, V. I., Kostyanovsky, R. G., Bull. Acad. Sci. Div. Chem. Sci., **1987**, 36, 1436 – 1440.
- ¹⁵Prokof'ev, A. I., Rudchenko, V. F., Ignatov, S. M., Chervin, I. I., Kostyanovsky, R.G., *Bull. Acad. Sci. Div. Chem. Sci.*, **1989**, 38, 1666 – 1671.

Received: 28.11.2014. Accepted: 18.01.2015.