

First and Corresponding Author: Dr. P. Sivabalan, Associate Professor, Department of Surgery, GMCH Nagapattinam, INDIA. Email: drsivabalan1995@gmail.com

Second Author: Dr. Pandiyaraj, Assistant Professor, Department of Surgery, GMCH Nagapattinam, INDIA. Email: pandy1092@gmail.com

Third Author: Dr. Rajesh S, Assistant Professor, Department of Surgery, GMCH Nagapattinam, INDIA. Email: drsrajesh93@gmail.com

Received Date: 18/06/2023 Revised Date: 20/07/2023 Accepted Date: 03/08/2023

Abstract

Background: Worldwide, however, gastric cancer remains the fifth most common cancer and a leading cause of cancer mortality. The incidence of gastric cancer has considerable geographic variability with a significantly higher occurrence in Asia and Latin America than in North America and Europe. The average age of diagnosis in the United States is 69 years of age with the majority of patients diagnosed in the seventh decade of life and later. Men are more likely to have gastric cancer than women, and Hispanic Americans, African Americans, and Asian/Pacific Islanders are more frequently affected than non-Hispanic whites. Individuals with lower socioeconomic status are more likely to be affected in both the United States and in developing countries. Since 1930, the incidence of gastric cancer has decreased significantly, although the reasons for this change are unclear. The incidence of tumors located distally within the stomach have decreased, whereas the incidence of more proximal gastric tumors has increased. Despite the decreasing incidence, gastric cancer remains highly lethal in the United States with an anticipated overall 5-year survival rate of 29%. Most of the time patients present to OPDs with signs of inoperability. Those who planned for surgery landed up in diversion in two third of cases. This study is to specify which diversive procedure will be effective in patients symptom free.

Key words: Gastric cancer

Introduction:

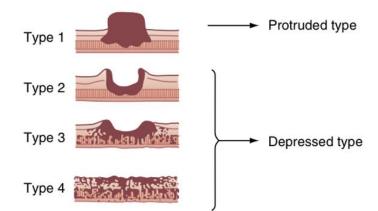

Factors associated with Gastric cancer

Table 1: Factor associated with increased risk for developing stomach cancer

Nutritional		
Low fat or protein consumption		
Salted meat or fish		
High nitrate consumption		
Obesity		
High complex carbohydrates consumption		

Environmental		
Poor food preparation (smoked, salted)		
Lack of refrigeration		
Poor drinking water(e.g. contaminated well		
water)		
Smoking and alohol		
Social		
Low socioeconomic class		
Medical		
Prior gastric surgery		
Helicobacter pylori and Epstein-Barr virus		
infection		
Prior abdominal irradiation		
Atrophic gastritis		
Adenomatous polyps		
Other		
Male sex		

Classifications

Figure 1: Borrmann pathologic classification of gastric cancer based on gross appearance. (From Iriyama K, Asakawa T, Koike H, et al. Is extensive lymphadenectomy necessary for surgical treatment of intranucosal carcinoma of the stomach? Arch Surg. 1989;124:309-311)

Table 2: Lauren classification system for gastric cancer.		
Intestinal	Diffuse	
Environmental	Familial	
Gastric atrophy, intestinal metaplasia	Blood type A	
Men> Women	Women>men	
Increasing incidence with age	Younger age group	
Gland formation	Poorly Differentiated, signet ring cells	
Hematogenous spread	Transmural, lymphatic spread	
Microsatellite instability	Decreased E- cadherin	
APC gene mutations		
P53, p16 inactivation	P53, p16 inactivation	

Table 2: Lauren classification system for gastric cancer.
--

APC, Adenomatous polyposis coil.

Primary Tumor(T)		
Тх	Primary tumor cannot be assessed	
TO	No evidence of primary tumor	
Tis	Carcinoma in situ; intraepithelial tumor without invasion	
	of the lamina propria, high-grade dysplasia	
T1	Tumor invades lamina propria, muscularis mucosae, or	
	submucosa	
T1a	Tumor invades lamina propria, or muscularis mucosae	
T1b	Tumor invades submucosa	
T2	Tumor invades muscularis propria	
T3	Tumor penetrates subserosal connective tissue without	
	invasion of visceral peritoneum or adjacent structures	
T4	Tumar invades serosa(visceral peritoneum) or adjacent	
	structures	
T4a	Tumor invades serosa(visceral peritoneum)	
T4b	Tumor invades adjacent structures	
Regional Lymph Nodes (N)		
NX	Regional lymph node(s) cannot be assessed	
N0	Mo regional lymph node metastasis	
N1	Metastasis in 1-2 regional lymph nodes	
N2	Metastasis in 3-6 regional lymph nodes	
N3	Metastasis in 7 or more regional lymph nodes	
N3a	Metastasis in 7-15 regional lymph nodes	
N3b	Metastasis in 16 or more regional lymph nodes	
	Distant Metastasis(M)	
M0	No Distant metastasis	
M1	Distant metastasis	

TNM Staging

Table 3: Tumor,	node, metastasis	classification	of carcinoma	of the stomach

Table 3a

Pathologic Stage Prognostic Group				
Pathologic Stage		Prognostic Group		
0	Tis	NO	M0	
IA	T1	NO	M0	
IB	T1	N1	M0	
	T2	NO	M0	
IIA	T1	N2	M0	
	T2	N1	M0	
	T3	NO	M0	
IIB	T1	N3a	M0	
	T2	N2	M0	
	T3	N1	M0	
	T4a	NO	M0	
IIIA	T2	N3a	M0	
	T3	N2	M0	
	T4a	N1	M0	
	T4a	N2	M0	
	T4b	NO	M0	

IIIB	T1	N3b	M 0
	T2	N3b	M0
	T3	N3a	M0
	T4a	N3a	M0
	T4b	N1	M0
	T4b	N2	M0
IIIC	T3	N3b	M0
	T4a	N3b	M0
	T4b	N3a	M0
	T4b	N3b	M0
IV	Any T	Any N	M1

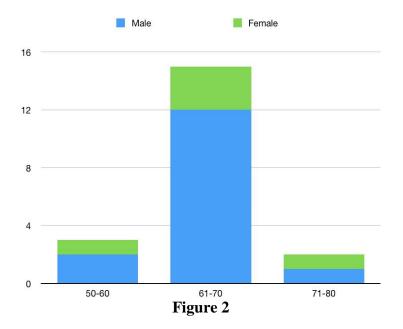
From Amin MB, Edge SB, Greene FL, et al. AJCC cancer staging, Manual. 8th ed. New York: Springer international publishing. 2017

Aim of study: To compare the efficacy of Roux en y and antecolic loop Gastro jejunostomy in Advanced carcinoma stomach.

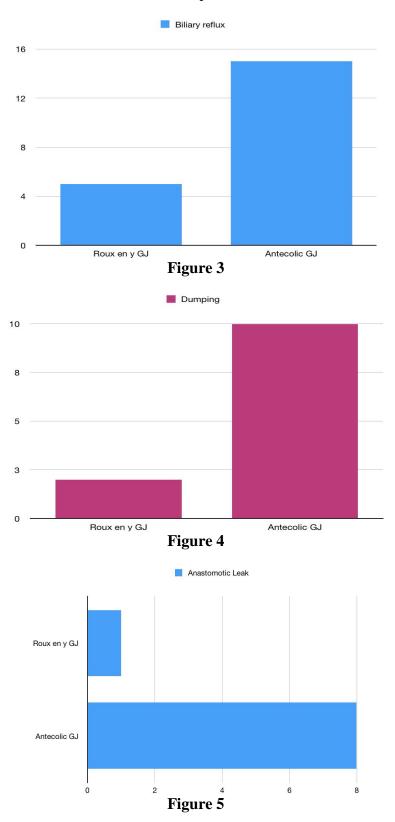
Place of study: Government Medical College Hospital, Nagapattinam.

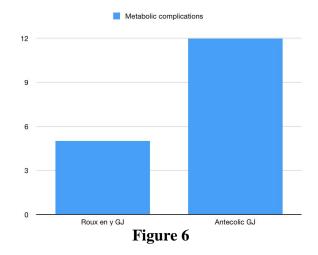
Sample size: 20

Study type: Comparative study


Inclusion criteria: Patients with advanced stomach cancer

Exclusion criteria: Patients with operable or Early type gastric cancer.


Results


Table 1		
Age	Male	Female
40-50	2	1
60-70	12	3
70-80	1	1

Results of the study shows Gastric cancer is more common in men when compared with women. 60-70 is the age group which affected more.

Those who undergone Roux En Y Gastro jejunostomy had lesser complications when compared with Antecolic Gastrojejunostomy. Most common complication in patients undergoing Antecolic GJ is Biliary reflux gastritis. Other complications include Dumping syndrome, anastomotic leak and metabolic complications.

Conclusion

Locoregionally advanced or metastatic gastric cancer does not benefit from surgical resection. Obstruction and bleeding tend to be the most common symptoms. Palliative intent gastrectomy is rarely performed, but may be beneficial for uncontrolled bleeding after failure of radiation therapy, which is the preferred management for tumor-related bleeding. Gastric bypass with gastrojejunostomy may be performed for obstruction in an attempt to palliate symptoms. However, recent advances in endoscopic management, including the use of stents, may allow for sufficient symptom control without the need for invasive procedures. Although survival rates for gastric cancer have slowly improved, the overall 5-year survival rate remains poor at 29%. Prognosis correlates with the stage of disease at initial presentation. Here we conclude the study by addressing Roux en Y GJ is better than Antecolic GJ.

References

- 1. American Cancer Society. Cancer Facts and Figures 2016. Atlanta, GA: American Cancer Society; 2016.
- Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7-30.
- Salvon-Harman JC, Cady B, Nikulasson S, Khettry U, Stone MD, Lavin P. Shifting proportions of gastric adenocarcinomas. Arch Surg. 1994;129(4):381-388, [discussion 388–389].
 Fock KM, Talley N, Moayyedi P, et al. Asia-Pacific consensus guidelines on gastric cancer prevention. J Gastroenterol Hepatol. 2008;23(3):351-365.
- 4. Lauren P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol Microbiol Scand. 1965;64:31-49.
- 5. Werner M, Becker KF, Keller G, Höfler H. Gastric adenocarcinoma: pathomorphology and molecular pathology. J Cancer Res Clin Oncol. 2001;127(4):207-216.
- 6. Gore RM. Gastric cancer. Clinical and pathologic features. Radiol Clin North Am. 1997;35(2):295-310.
- Kodera Y, Yamamura Y, Torii A, et al. The prognostic value of preoperative serum levels of CEA and CA 19-9 in patients with gastric cancer. Am J Gastroenterol. 1996;91(1):49-53.
- 8. Willis S, Truong S, Gribnitz S, Fass J, Schumpelick V. Endoscopic ultrasonography in the preoperative staging of gastric cancer: accuracy and impact on surgical therapy. Surg Endosc. 2000;14(10):951-954.
- 9. D'Ugo DM, Pende V, Persiani R, Rausei S, Picciocchi A. Laparoscopic staging of gastric cancer: an overview. J Am Coll Surg. 2003;196(6): 965-974.