Interpolation of Inverse Quintic Spline on Applying Polynomial Iteration Method

G. S. Rekha ${ }^{1, \text { a) }}$ A.M. Anto ${ }^{\text {2, b) }}$ and Madhukar Mallayya ${ }^{3, \text { c) }}$
${ }^{1}$ Reg. No: 19113012092001
Malankara Catholic College, Mariagiri, Tamil Nadu, India - 629153
Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, India - 627012
${ }^{2}$ Department of Mathematics
St. Albert's College (Autonomous), Kochi, Kerala, India - 682018
${ }^{3}$ Department of Mathematics, Mohandas College of Engineering \& Techonology, Thiruvananthapuram, Kerala, India - 695544. Affiliated to APJ Abdul Kalam Technological University, Kerala, India
${ }^{\text {a) }}$ Corresponding author: rekhasuresh006@gmail.com
${ }^{\text {b) }}$ antoalexam@gmail.com, ${ }^{\text {c) }}$ mmallayyav@gmail.com

Abstract

Quintic Spline interpolation is the process of interpolation using splines of degree five. This paper deals with the derivation of inverse quintic spline using Polynomial Iteration technique and its evaluation using a set of data points, then corresponding error is also calculated.

Mathematical Subject Classification: 41A15, 65D05, 65D07
Keywords: Interpolation, Spline, Natural Quintic Spline, Polynomial Iteration Method.

1. Introduction

Spline interpolation is a form of interpolation using piecewise polynomial called splines. Spline interpolation is often preferred over polynomial interpolation because the interpolation error can be reduced considerably with different degree splines.

Based on the first derivative spline conditions, splines can be classified into different types such as Natural Spline, Parabolic Runout Spline, Cubic Runout Spline, Periodic Spline, Extrapolated

Spline. This paper deals with Natural Quintic spline interpolation and the inverse quintic spline are derived using Polynomial Iteration method

2. NATURAL QUINTIC SPLINE

Consider a set of data points $\left(x_{i}, y_{i}\right)$ where $i=0,1,2 \ldots \ldots, n$ of the function $y=f(x)$. Let $I=\left[x_{i}, x_{i+1}\right]$ be a subinterval of $\left[x_{0}, x_{n}\right]$. Let $S_{i}(x)$ denote the spline function of n functions and every spline work is characterized in the interval [x_{i}, x_{i+1}]. On account of quintic spline, the functions $S_{i}(x)$ are the quintic spline polynomials coefficients has to be resolved.

Definition:

A spline polynomial $S(x)$ of degree n which is piecewise, having continuous derivative up to order $n-1$ considering each subinterval $S_{i}\left(x_{i}\right)$ as polynomials of degree n .

$$
S(x)=\left\{\begin{array}{cc}
S_{0}(x), & x \in\left[x_{0}, x_{1}\right] \\
S_{1}(x), & x \in\left[x_{1}, x_{2}\right] \\
\cdot \\
\cdot \\
\cdot \\
S_{n}(x), & x \in\left[x_{n-1}, x_{n}\right]
\end{array}\right.
$$

A Formula for Natural Quintic spline has been derived, details of which can be had from [2] based on the following boundary conditions:

Boundary conditions

The limit conditions are,
a) $S_{i}\left(x_{i}\right)=y_{i}, i=0,1,2 \ldots . . n$
b) $S_{i}\left(x_{i+1}\right)=y_{i+1}, i=0,1,2 \ldots . . n-2$
c) $S_{i}\left(x_{i}\right), S_{i}{ }^{\prime}\left(x_{i}\right), S_{i}{ }^{\prime \prime}\left(x_{i}\right), S_{i}^{\prime \prime \prime}\left(x_{i}\right)$ and $S_{i}^{1 v}(x)$ are continuous.
d) $S_{i}{ }^{1 v}\left(x_{0}\right)=S_{i+1}{ }^{1 v}\left(x_{n}\right)=0$
e) $S_{n-1}{ }^{\prime \prime}\left(x_{n}\right)=0$
f) $S_{n-1}{ }^{\prime \prime \prime}\left(x_{n}\right)=0$

On applying these conditions, we get a set of equation with coefficients. Solving the coefficients of the functions which on substituting gives the derivation of the natural quintic spline functions $S_{i}(x)$.

3. Derivation of Quintic Spline

Since $S_{i}(x)$ is a quintic spline, $S_{i}{ }^{\prime v}(x)$ is linear.

$$
\begin{equation*}
S_{i}^{\prime v}(x)=\frac{1}{h_{i}}\left[\left(x_{i+1}-x\right) M_{i}+\left(x-x_{i}\right) M_{i+1}\right], i=0,1,2 \ldots . . n-1 \tag{1}
\end{equation*}
$$

where $h_{i}=x_{i+1}-x_{i}$
Integrating (1) four times,

$$
\begin{align*}
& S_{i}(x)=\frac{1}{h_{i}}\left[\frac{\left(x_{i+1}-x\right)^{5}}{120} M_{i}+\frac{\left(x-x_{i}\right)^{5}}{120} M_{i+1}\right]+C_{i}\left(x_{i+1}-x\right)\left(x-x_{i}\right)^{2}+D_{i}\left(x_{i+1}-x\right)\left(x-x_{i}\right)+ \\
& \quad E_{i}\left(x_{i+1}-x\right)+F_{i}\left(x-x_{i}\right) \tag{2}
\end{align*}
$$

Using the boundary conditions (a) and (b) in (1),

$$
\begin{align*}
& E_{i}=\frac{y_{i}}{h_{i}}-\frac{h_{i}{ }^{3}}{120} M_{i} \tag{3}\\
& F_{i}=\frac{y_{i+1}}{h_{i}}-\frac{h_{i}{ }^{3}}{120} M_{i+1}, \text { for } i=0,1,2 \ldots . n-1 \tag{4}
\end{align*}
$$

Differentiating (2), the first derivative of $S_{i}(x)$ can be obtained:

$$
\begin{align*}
& S_{i}^{\prime}(x)= \frac{1}{h_{i}}\left[-\frac{\left(x_{i+1}-x\right)^{4}}{24} M_{i}+\frac{\left(x-x_{i}\right)^{4}}{24} M_{i+1}\right]+C_{i}\left(2 x x_{i+1}-2 x_{i} x_{i+1}-3 x^{2}+4 x x_{i}-x_{i}^{2}\right)+ \\
& D_{i}\left(x_{i+1}+x_{i}-2 x\right)+E_{i}(-1)+F_{i} \tag{5}
\end{align*}
$$

Then the following recurrence relation is obtained:
$\left[\frac{h_{i}{ }^{3}}{24}-\frac{h_{i+1}{ }^{3}}{24}\right] M_{i+1}+\frac{h_{i+1}{ }^{3}}{120}\left[M_{i+2}-M_{i+1}\right]-\frac{h_{i}{ }^{3}}{120}\left[M_{i+1}-M_{i}\right]+\left[C_{i+1} h_{i+1}{ }^{2}-C_{i} h_{i}{ }^{2}\right]+$
$\left[D_{i+1} h_{i+1}-D_{i} h_{i}\right]=\Delta_{i+1}-\Delta_{i}$
Where $\Delta_{i}=\frac{y_{i+1}-y_{i}}{h_{i}}$
Differentiating (5), we get $S_{i}{ }^{\prime \prime}(x)$:
$S_{i}{ }^{\prime \prime}(x)=\frac{1}{h_{i}}\left[\frac{\left(x_{i+1}-x\right)^{3}}{6} M_{i}+\frac{\left(x-x_{i}\right)^{3}}{6} M_{i+1}\right]+C_{i}\left[2 x_{i+1}-6 x+4 x_{i}\right]+D_{i}[-2]$
On applying the continuity condition defined in (c) (ii), we get the next expression follows:

$$
\begin{equation*}
D_{i}=D_{i+1}-\left[\frac{z_{i}}{12}\right] M_{i+1}+2\left[C_{i+1} h_{i+1}-C_{i} h_{i}\right] \text { for } i=0,1,2 \ldots . . n-1 \tag{8}
\end{equation*}
$$

Once again differentiating (7), the third derivative is obtained:
$S_{i}{ }^{\prime \prime \prime}(x)=\frac{1}{h_{i}}\left[-\frac{\left(x_{i+1}-x\right)^{2}}{2} M_{i}+\frac{\left(x-x_{i}\right)^{2}}{2} M_{i+1}\right]-6 C_{i}$
Again applying the condition defined in (c), (iii) the new expression is:

$$
\begin{equation*}
C_{i}=C_{i+1}+\left[\frac{h_{i}-h_{i+1}}{12}\right] M_{i+1} \text { for } i=0,1,2 \ldots . . n-1 \tag{10}
\end{equation*}
$$

Replacing equation (8) in (6) then the following relation is obtained:
$h_{i}^{3}\left[M_{i}-6 M_{i+1}\right]+h_{i+1}^{3}\left[M_{i+2}-6 M_{i+1}\right]+120 C_{i+1} Z_{i}+10 h_{i}^{2} h_{i+1} M_{i+1}+120\left[D_{i+1} h_{i+1}-\right.$
$\left.D_{i} h_{i}\right]=120\left[\Delta_{i+1}-\Delta_{i}\right]$ where $Z_{i}=h_{i+1}^{2}-h_{i}^{2}$ for $i=0,1,2 \ldots . . n-1$

Using the Boundary Conditions (d), (e) and (f) in (8), (10) and (11) gives $C_{n-1}=0$ and $D_{n-1}=0$

Finally on solving (6), (8) and (9) and replacing it into (2) along with (3), (4) and (12), the spline function $S_{i}(x)$ is obtained.

4. Inverse By Polynomial Iteration Method

Consider a fifth-degree polynomial

$$
\begin{align*}
& y=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5} \\
& y-a_{0}=a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5} \\
& a_{1} x=y-a_{0}-a_{2} x^{2}-a_{3} x^{3}-a_{4} x^{4}-a_{5} x^{5} \\
& x=\frac{y-a_{0}}{a_{1}}-\frac{a_{2}}{a_{1}} x^{2}-\frac{a_{3}}{a_{1}} x^{3}-\frac{a_{4}}{a_{1}} x^{4}-\frac{a_{5}}{a_{1}} x^{5} \tag{13}
\end{align*}
$$

On neglecting the higher powers of x and using the first approximation for x is

$$
\begin{equation*}
\boldsymbol{x}^{(\mathbf{1})}=\frac{y-a_{0}}{a_{1}} \tag{14}
\end{equation*}
$$

Substituting (2) in (1) the second approximation is

$$
\begin{aligned}
x^{(2)}=\frac{y-a_{0}}{a_{1}} & -\frac{a_{2}}{a_{1}}\left[\frac{y-a_{0}}{a_{1}}\right]^{2}-\frac{a_{3}}{a_{1}}\left[\frac{y-a_{0}}{a_{1}}\right]^{3}-\frac{a_{4}}{a_{1}}\left[\frac{y-a_{0}}{a_{1}}\right]^{4}-\frac{a_{5}}{a_{1}}\left[\frac{y-a_{0}}{a_{1}}\right]^{5} \\
x^{(2)}=\frac{y-a_{0}}{a_{1}} & -\frac{a_{2}}{a_{1}}\left[\frac{y^{2}-2 a_{0} y+a_{0}^{2}}{a_{1}^{2}}\right]-\frac{a_{3}}{a_{1}}\left[\frac{y^{3}-3 a_{0} y^{2}+3 a_{0}^{2} y+a_{0}^{3}}{a_{1}^{3}}\right] \\
& -\frac{a_{4}}{a_{1}}\left[\frac{y^{4}-4 a_{0} y^{3}+6 a_{0}^{2} y^{2}-4 a_{0}^{3} y+a_{0}^{4}}{a_{1}^{4}}\right] \\
& -\frac{a_{5}}{a_{1}}\left[\frac{y^{5}-5 a_{0} y^{4}+10 a_{0}^{2} y^{3}-10 a_{0}^{3} y^{2}+5 a_{0}^{4} y-a_{0}^{5}}{a_{1}^{5}}\right] \\
x=\left[\frac{-a_{5}}{a_{1}^{6}}\right] y^{5} & +\left[\frac{5 a_{5} a_{0}}{a_{1}^{6}}-\frac{a_{4}}{a_{1}^{5}}\right] y^{4}+\left[\frac{-10 a_{5} a_{0}^{2}}{a_{1}^{6}}+\frac{4 a_{4} a_{0}}{a_{1}^{5}}-\frac{a_{3}}{a_{1}^{4}}\right] y^{3} \\
& +\left[\frac{10 a_{5} a_{0}^{3}}{a_{1}^{6}}-\frac{6 a_{4} a_{0}^{2}}{a_{1}^{5}}+\frac{3 a_{3} a_{0}}{a_{1}^{4}}-\frac{a_{2}}{a_{1}^{3}}\right] y^{2} \\
& +\left[\frac{-5 a_{5} a_{0}^{4}}{a_{1}^{6}}+\frac{4 a_{4} a_{0}^{3}}{a_{1}^{5}}-\frac{3 a_{3} a_{0}{ }^{2}}{a_{1}^{4}}+\frac{2 a_{2} a_{0}}{a_{1}^{3}}+\frac{1}{a_{1}}\right] y \\
& +\left[\frac{a_{5} a_{0}^{5}}{a_{1}^{6}}-\frac{a_{4} a_{0}^{4}}{a_{1}^{5}}+\frac{a_{3} a_{0}^{3}}{a_{1}^{4}}-\frac{a_{2} a_{0}^{2}}{a_{1}^{3}}-\frac{a_{0}}{a_{1}}\right]
\end{aligned}
$$

5. Derivation Of Inverse Quintic Spline Using Polynomial Iteration Method

Consider the quintic spline interpolation formula

$$
\begin{aligned}
& S_{i}(x)=\left[\frac{h_{i}^{4} M_{i+1}}{120}+F_{i} h_{i}\right]+\left[\frac{-5 h_{i}^{3} M_{i+1}}{120}+C_{i} h_{i}^{2}+D_{i} h_{i}+E_{i}-F_{i}\right] X_{i} \\
&+ {\left[\frac{h_{i}^{2} M_{i+1}}{12}-2 C_{i} h_{i}-D_{i}\right] X_{i}{ }^{2}+\left[C_{i}-\frac{h_{i} M_{i+1}}{12}\right] X_{i}{ }^{3}+\left[\frac{M_{i+1}}{24}\right] X_{i}^{4} } \\
&+\left[\frac{M_{i}-M_{i+1}}{120 h_{i}}\right] X_{i}{ }^{5}
\end{aligned}
$$

$y_{i}=S_{i}(x)=P_{i}+Q_{i} X_{i}+R_{i} X_{i}^{2}+S_{i} X_{i}^{3}+T_{i} X_{i}^{4}+W_{i} X_{i}^{5}$ be a fifth-degree polynomial
Applying Polynomial Iteration Method in equation (5), so that we get an inverse equation for X_{i} in terms of y where $h_{i}=x_{i+1}-x_{i} i=0,1,2, \ldots \ldots . n$
Where $P_{i}=\frac{h_{i}^{4} M_{i+1}}{120}+F_{i} h_{i}$

$$
\begin{aligned}
& Q_{i}=\frac{-5 h_{i}^{3} M_{i+1}}{120}+C_{i} h_{i}^{2}+D_{i} h_{i}+E_{i}-F_{i} \\
& R_{i}=\frac{h_{i}^{2} M_{i+1}}{12}-2 C_{i} h_{i}-D_{i} \\
& S_{i}=C_{i}-\frac{h_{i} M_{i+1}}{12} \\
& T_{i}=\frac{M_{i+1}}{24} \\
& W_{i}=\frac{M_{i}-M_{i+1}}{120 h_{i}}
\end{aligned}
$$

$$
y_{i}-P_{i}=Q_{i} X_{i}+R_{i} X_{i}^{2}+S_{i} X_{i}^{3}+T_{i} X_{i}^{4}+W_{i} X_{i}^{5}
$$

$$
Q_{i} X_{i}=y_{i}-P_{i}-R_{i} X_{i}^{2}-S_{i} X_{i}^{3}-T_{i} X_{i}^{4}-W_{i} X_{i}^{5}
$$

$$
\begin{equation*}
X_{i}=\frac{y_{i}-P_{i}}{Q_{i}}-\frac{R_{i}}{Q_{i}} X_{i}^{2}-\frac{S_{i}}{Q_{i}} X_{i}{ }^{3}-\frac{T_{i}}{Q_{i}} X_{i}^{4}-\frac{W_{i}}{Q_{i}} X_{i}^{5} \tag{15}
\end{equation*}
$$

The first approximation for X_{i} is obtained by neglecting the higher powers of X_{i}, Hence

$$
\begin{equation*}
X_{i}^{(1)}=\frac{y_{i}-P_{i}}{Q_{i}} \tag{16}
\end{equation*}
$$

Now the second approximation is obtained by substituting (4) in (3)

$$
X_{i}^{(2)}=\frac{y_{i}-P_{i}}{Q_{i}}-\frac{R_{i}}{Q_{i}}\left[\frac{y_{i}-P_{i}}{Q_{i}}\right]^{2}-\frac{S_{i}}{Q_{i}}\left[\frac{y_{i}-P_{i}}{Q_{i}}\right]^{3}-\frac{T_{i}}{Q_{i}}\left[\frac{y_{i}-P_{i}}{Q_{i}}\right]^{4}-\frac{W_{i}}{Q_{i}}\left[\frac{y_{i}-P_{i}}{Q_{i}}\right]^{5}
$$

$$
\begin{aligned}
& X_{i}^{(2)}=\frac{y_{i}-P_{i}}{Q_{i}}-\frac{R_{i}}{Q_{i}}\left[\frac{y_{i}{ }^{2}-2 y_{i} P_{i}+P_{i}^{2}}{Q_{i}{ }^{2}}\right]-\frac{S_{i}}{Q_{i}}\left[\frac{y_{i}^{3}-3 y_{i}{ }^{2} P_{i}+3 y_{i} P_{i}{ }^{2}-P_{i}^{3}}{Q_{i}{ }^{3}}\right] \\
& -\frac{T_{i}}{Q_{i}}\left[\frac{y_{i}^{4}-4 y_{i}{ }^{3} P_{i}+6 y_{i}{ }^{2} P_{i}{ }^{2}-4 y_{i} P_{i}{ }^{3}+P_{i}^{4}}{Q_{i}{ }^{4}}\right] \\
& -\frac{W_{i}}{Q_{i}}\left[\frac{y_{i}^{5}-5 y_{i}^{4} P_{i}+10 y_{i}{ }^{3} P_{i}{ }^{2}-10 y_{i}{ }^{2} P_{i}{ }^{3}+5 y_{i} P_{i}^{4}-P_{i}^{5}}{Q_{i}{ }^{5}}\right] \\
& X_{i}{ }^{(2)}=\left[-\frac{W_{i}}{Q_{i}{ }^{6}}\right] y_{i}^{5}+\left[\frac{5 W_{i} P_{i}}{Q_{i}{ }^{6}}-\frac{T_{i}}{Q_{i}{ }^{5}}\right] y_{i}^{4}+\left[\frac{-10 W_{i} P_{i}{ }^{2}}{Q_{i}{ }^{6}}+\frac{4 T_{i} P_{i}}{Q_{i}{ }^{5}}-\frac{S_{i}}{Q_{i}{ }^{4}}\right] y_{i}{ }^{3} \\
& +\left[\frac{10 W_{i} P_{i}^{3}}{Q_{i}{ }^{6}}-\frac{6 T_{i} P_{i}{ }^{2}}{Q_{i}{ }^{5}}+\frac{3 S_{i} P_{i}}{Q_{i}{ }^{4}}-\frac{R_{i}}{Q_{i}{ }^{3}}\right] y_{i}{ }^{2} \\
& +\left[\frac{-5 W_{i} P_{i}{ }^{4}}{Q_{i}{ }^{6}}+\frac{4 T_{i} P_{i}{ }^{3}}{Q_{i}{ }^{5}}-\frac{3 S_{i} P_{i}{ }^{2}}{Q_{i}{ }^{4}}+\frac{2 R_{i} P_{i}}{Q_{i}{ }^{3}}+\frac{1}{Q_{i}}\right] y_{i} \\
& +\left[\frac{W_{i} P_{i}{ }^{5}}{Q_{i}{ }^{6}}-\frac{T_{i} P_{i}{ }^{4}}{Q_{i}{ }^{5}}+\frac{S_{i} P_{i}{ }^{3}}{Q_{i}{ }^{4}}-\frac{R_{i} P_{i}{ }^{2}}{Q_{i}{ }^{3}}-\frac{P_{i}}{Q_{i}}\right]
\end{aligned}
$$

Let $S_{i}(x)=y$, and $\quad X_{i}=x_{i+1}-x, x=x_{i+1}-X_{i}$
Then the Inverse quintic spline is $S_{i}^{-1}\left(y_{i}\right)=x_{i+1}-X_{i}$, Hence
$S_{i}^{-1}\left(y_{i}\right)=x_{i+1}+\left[\frac{W_{i}}{Q_{i}{ }^{6}}\right] y_{i}^{5}+\left[\frac{T_{i}}{Q_{i}{ }^{5}}-\frac{5 W_{i} P_{i}}{Q_{i}{ }^{6}}\right] y_{i}^{4}+\left[\frac{10 W_{i} P_{i}{ }^{2}}{Q_{i}{ }^{6}}-\frac{4 T_{i} P_{i}}{Q_{i}{ }^{5}}+\frac{S_{i}}{Q_{i}{ }^{4}}\right] y_{i}{ }^{3}+\left[-\frac{10 W_{i} P_{i}{ }^{3}}{Q_{i}{ }^{6}}+\right.$
$\left.\frac{6 T_{i} P_{i}{ }^{2}}{Q_{i}{ }^{5}}-\frac{3 S_{i} P_{i}}{Q_{i}{ }^{4}}+\frac{R_{i}}{Q_{i}{ }^{3}}\right] y_{i}{ }^{2}+\left[\frac{5 W_{i} P_{i}{ }^{4}}{Q_{i}{ }^{6}}-\frac{4 T_{i} P_{i}{ }^{3}}{Q_{i}{ }^{5}}+\frac{3 S_{i} P_{i}{ }^{2}}{Q_{i}{ }^{4}}-\frac{2 R_{i} P_{i}}{Q_{i}{ }^{3}}-\frac{1}{Q_{i}}\right] y_{i}+\left[-\frac{W_{i} P_{i}{ }^{5}}{Q_{i}{ }^{6}}+\frac{T_{i} P_{i}{ }^{4}}{Q_{i}{ }^{5}}-\frac{S_{i} P_{i}{ }^{3}}{Q_{i}{ }^{4}}+\right.$ $\left.\frac{R_{i} P_{i}{ }^{2}}{Q_{i}{ }^{3}}+\frac{P_{i}}{Q_{i}}\right]$
$S_{i}^{-1}\left(y_{i}\right)=x_{i+1}+l_{i} y_{i}^{5}+m_{i} y_{i}^{4}+n_{i} y_{i}^{3}+o_{i} y_{i}^{2}+p_{i} y_{i}+q_{i}$
Hence $S_{i}{ }^{-1}\left(y_{i}\right)$ is the required inverse equation of a fifth degree polynomial
Where $l_{i}=\frac{W_{i}}{Q_{i}{ }^{6}}$

$$
\begin{aligned}
& m_{i}=\frac{T_{i}}{Q_{i}{ }^{5}}-\frac{5 W_{i} P_{i}}{Q_{i}{ }^{6}} \\
& n_{i}=\frac{10 W_{i} P_{i}{ }^{2}}{Q_{i}{ }^{6}}-\frac{4 T_{i} P_{i}}{Q_{i}{ }^{5}}+\frac{S_{i}}{Q_{i}{ }^{4}} \\
& o_{i}=-\frac{10 W_{i} P_{i}^{3}}{Q_{i}{ }^{6}}+\frac{6 T_{i} P_{i}^{2}}{Q_{i}{ }^{5}}-\frac{3 S_{i} P_{i}}{Q_{i}{ }^{4}}+\frac{R_{i}}{Q_{i}{ }^{3}} \\
& p_{i}=\frac{5 W_{i} P_{i}{ }^{4}}{Q_{i}{ }^{6}}-\frac{4 T_{i} P_{i}{ }^{3}}{Q_{i}{ }^{5}}+\frac{3 S_{i} P_{i}{ }^{2}}{Q_{i}{ }^{4}}-\frac{2 R_{i} P_{i}}{Q_{i}{ }^{3}}-\frac{1}{Q_{i}}
\end{aligned}
$$

$$
q_{i}=-\frac{W_{i} P_{i}{ }^{5}}{Q_{i}{ }^{6}}+\frac{T_{i} P_{i}{ }^{4}}{Q_{i}{ }^{5}}-\frac{S_{i} P_{i}{ }^{3}}{Q_{i}{ }^{4}}+\frac{R_{i} P_{i}{ }^{2}}{Q_{i}{ }^{3}}+\frac{P_{i}}{Q_{i}}
$$

6. Illustration

An example was illustrated on the inverse quintic spline using polynomial iteration method.

Figure: 1 Quintic Spline

$$
\begin{array}{lll}
x_{0}=-1 & y_{0}=1 \\
x_{1}=-0.7 & y_{1}=0.2401 \\
x_{2}=-0.6 & y_{2}=0.1296 \\
x_{3}=-0.4 & y_{3}=0.0256 & \\
x_{4}=-0.3 & y_{4}=0.0081 & \\
x_{5}=-0.1 & y_{5}=0.0001 & \\
x_{6}=0.2 & y_{6}=0.0016 & \\
& & \\
h_{i}=x_{i+1}-x_{i} & Z_{i}=h_{i+1}^{2}-h_{i}^{2} & \Delta_{i}=\frac{y_{i+1}-y_{i}}{h_{i}} \\
& & \Delta_{0}=-2.533 \\
h_{0}=0.3 & Z_{0}=-0.08 & \Delta_{1}=-1.105 \\
h_{1}=0.1 & Z_{1}=0.03 & \Delta_{2}=-0.52 \\
h_{2}=0.2 & Z_{2}=-0.03 & \Delta_{3}=-0.175 \\
h_{3}=0.1 & Z_{3}=0.03 & \Delta_{4}=-0.04 \\
h_{4}=0.2 & Z_{4}=-0.05 &
\end{array}
$$

$$
h_{5}=0.3
$$

$$
\Delta_{5}=0.005
$$

In Natural quintic spline, $M_{0}=M_{6}=0$,

$$
\begin{aligned}
& M_{1}=12486.60807 \\
& M_{2}=11396.97861 \\
& M_{3}=-7546.267881 \\
& M_{4}=-899.4587566 \\
& M_{5}=-179.9381436 \\
& C_{i}=C_{i+1}+\left[\frac{h_{i}-h_{i+1}}{12}\right] M_{i+1} \\
& C_{0}=59.244721 \\
& C_{1}=-148.865413 \\
& C_{2}=-53.890592 \\
& C_{3}=8.994974 \\
& C_{4}=1.499485 \\
& C_{5}=0 \\
& E_{0}=10 / 3 \\
& E_{1}=2.296944933 \\
& E_{2}=-0.111798574 \\
& E_{3}=0.3188855657 \\
& E_{4}=0.1004639171 \\
& E_{5}=0.04081941564 \\
& P_{0}=0.2401 \\
& P_{1}=0.1296 \\
& P_{2}=0.0256 \\
& P_{3}=0.0081 \\
& P_{4}=0.0001 \\
& P_{5}=0.0016 \\
& R_{0}=54.765234 \\
& R_{1}=54.76523381 \\
& R_{2}=53.85720925 \\
& R_{3}=-9.286945667 \\
& R_{4}=-3.747938308 \\
& R_{5}=-1.349536077 \\
& T_{0}=520.275336 \\
& T_{1}=474.8741088 \\
& D_{i}=D_{i+1}-\left[\frac{h_{i}^{2}-h_{i+1}^{2}}{12}\right] M_{i+1} \\
& D_{0}=3.337494 \\
& D_{1}=-14.586644 \\
& D_{2}=5.688956 \\
& D_{3}=1.199394 \\
& D_{4}=0.149948 \\
& D_{5}=0 \\
& F_{0}=-2.009153 \\
& F_{1}=1.201025178 \\
& F_{2}=0.6310845254 \\
& F_{3}=0.08849548964 \\
& F_{4}=0.012495876 \\
& F_{5}=0.0053333 \\
& Q_{0}=-2.371674182 \\
& Q_{1}=-2.326272929 \\
& Q_{2}=0.7547070786 \\
& Q_{3}=0.4777566943 \\
& Q_{4}=0.2379165129 \\
& Q_{5}=0.035486 \\
& S_{0}=-252.920481 \\
& S_{1}=-243.840235 \\
& S_{2}=71.880539 \\
& S_{3}=16.49046364 \\
& S_{4}=4.49845406 \\
& S_{5}=0 \\
& W_{0}=-346.850224 \\
& W_{1}=90.80245518
\end{aligned}
$$

$$
\begin{array}{ll}
T_{2}=-314.4278284 & W_{2}=789.3019371 \\
T_{3}=-37.47744819 & W_{3}=-553.9007604 \\
T_{4}=-7.497423 & W_{4}=-29.98002554 \\
T_{5}=0 & W_{5}=-4.998281767 \\
& \\
l_{0}=-1.948999933 & m_{0}-4.593814813 \\
l_{1}=0.5729722523 & m_{1}=-7.341966201 \\
l_{2}=4271.423458 & m_{2}=-1830.930948 \\
l_{3}=-46579.119522 & m_{3}=380.762465 \\
l_{4}=-165304.426574 & m_{4}=-9752.681156 \\
l_{5}=-2503101530.944174 & m_{5}=20024812.247553 \\
n_{0}=-2.458536 & o_{0}=-0.475657 \\
n_{1}=-4.616666176 & o_{1}=-1.827948964 \\
n_{2}=381.0573322 & o_{2}=102.5054244 \\
n_{3}=334.747198 & o_{3}=-93.20002299 \\
n_{4}=1407.910615 & o_{4}=-278.7252915 \\
n_{5}=-64079.396205 & o_{5}=-30097.918806 \\
p_{0}=1.361965 & q_{0}=0.027026 \\
p_{1}=1.199422576 & q_{1}=-0.1126428647 \\
p_{2}=-7.208785432 & q_{2}=0.111713285 \\
p_{3}=-0.6489704118 & q_{3}=0.01119035229 \\
p_{4}=-4.147452221 & q_{4}=0.0004175310681 \\
p_{5}=68.379278 & q_{5}=-0.032199
\end{array}
$$

Hence the Inverse Quintic Spline using Polynomial Iteration method is

$$
\left.\begin{array}{ll}
S_{0}^{-1}(y)=-1.948999933 y^{5}-4.593814813 y^{4}+-2.458536 y^{3}-0.475657 y^{2}+ \\
1.361965 y-0.672974, & y \epsilon[1,0.2401]
\end{array}\right] \begin{array}{ll}
S_{1}^{-1}(y)= & 1.827948964 y^{2}+ \\
0.5729722523 y^{5}+6988.150179 y^{4}-4.616666176 y^{3}- & \\
1.199422577 y-0.7126428647 y \epsilon[0.2401,0.1296] \\
S_{2}^{-1}(y)=4271.423458 y^{5}-1830.930948 y^{4}+381.0573322 y^{3}+102.5054244 y^{2}- \\
7.208785432 y-0.288286715, & y \epsilon[0.1296,0.0256] \\
S_{3}^{-1}(y)=-46579.11952 y^{5}+380.762465 y^{4}+334.747198 y^{3}-93.20002299- \\
0.6489704118 y-0.2888096477, & y \epsilon[0.0256,0.0081]
\end{array}
$$

$$
\begin{aligned}
S_{4}^{-1}(y)= & -165304.426574 y^{5}-9752.681156 y^{4}+1407.910615 y^{3}-278.725291 y^{2}+ \\
& -4.147452 y-0.099582, \quad y \in[0.0081,0.0001] \\
S_{5}^{-1}(y)= & -2503101530.944174 y^{5}+20024812.247553 y^{4}-64079.396205 y^{3}- \\
& -30097.918806 y^{2}+68.379278 y+0.167801, \quad y \in[0.0001,0.0016]
\end{aligned}
$$

7. Error Calculation

Error $=$ Actual value - Computational value				
Value of y	Interval	Actual value of x	Polynomial iteration method	
			Calculated value of x	Error
0.522	$[1,0.2401]$	-0.85	-0.857948	0.007948
0.1385	[0.2401, 0.1296$]$	-0.61	-0.596525	-0.013475
0.041	[0.1296, 0.0256$]$	-0.45	-0.389951	-0.060049
0.021	[0.0256, 0.0081$]$	-0.38	-0.340555	-0.039445
0.0041	[0.0081, 0.0001]	-0.266	-0.127118	-0.138882
0.0015	[0.0001, 0.0016$]$	0.197	0.202516	-0.005516

8. Conclusion

In this paper we figure out the Inverse quintic Spline from the derivation of the Qunitic spline using Polynomial Iteration Method. Here an example was also illustrated and the error is calculated successfully.

9. References

1. Anthony Ralston and Philip Rabinowitz, 'A First Course in Numerical Analysis', Second Edition, Dover Publications, INC.
2. A. M. Anto and G.S. Rekha, V. Madhukar Mallayya "Natural Quintic Spline", Advances in Mathematics: Scientific Journal 8 (2019), No.3, Page No: 788 - 791 (Special issue on ICRAPAM), ISSN 1857-8365 printed version, ISSN 1857-8438 electronic version)
3. A. M. Anto and G.S. Rekha, V. Madhukar Mallayya "Evaluation of a New Quintic Spline Formula", Aryabhatta Journal of Mathematics and Informatics, Vol:13 No.1, Jan - June 2021, ISSN (print): 0975-7139, ISSN (Online): 2394-9309.
4. Crochiere, R.E. and Rabiner, L.R. (1983): http:// en.m.wikipedia.org/wiki/interpolation.
5. Cubic Spline Interpolation, https://en.m.wikiversity.org/wiki/Cubic_Spline_ Interpolation.
6. Dhanya Ramachandran and V. Madhukar Mallayya, Inverse Cubic Spline, Indian Journal of Mathematics and Mathematical Sciences, Volume 12, No.1, January-June 2016, Page 43-54.
7. Hazewinkel, Michiel, ed. (2001): "Spline interpolation", Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4
8. Jain, M.K., Iyenger, S.R.K., and Jain, R.K. (2007): Numerical Methods for Scientific and Engineering Computation. Fifth Edition. Published by New Age International (P) Limited, Publishers.
9. Kim, H.K, (2005): Spline and Piecewise Interpolation. Slightly modified 3/1/09, 2/28/06 Firstly written at March 2005.
10. Rafael E.Banchs, Natural Quartic Spline, http://www.rbanchs.com,THFEL_PR07.
11. Schoenberg, Wikipedia. retrieved, October-22, 2013 from http://en.m.wikipedia.org/wiki/Isaac_Jacob_Schoenberg.
12. Spline Interpolation, Wikipedia. Retrieved October 22, 2013 from http://wikipedia.org/wiki/Splineinterpolation
13. S.S. Sastry, 'Introductory Methods of Numerical Analysis', Fifth Edition, PHI Learning Private Limited.
