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Abstract 

Today's scenario of rapidly increasing antibacterial drug resistance is a major problem. So, to prevent from 

microbial infection and multi-drug resistance AMPS (antimicrobial peptides) has been highlighted in recent 

years. AMPS are a unique group of shorter to longer chain of molecules that can target and resist the bacterial 

infection directly. However, identifying AMPS by lab-experiments is time consuming and costly. Therefore, it 

is significant to develop computational tool for AMPS prediction. Though some AMPS prediction tools have 

been developed recently, their performances are not well enough to distinguish the AMPS from anticancer 

peptides and anti-diabetic peptides. In this systematic study, the selected 180 peptide's predictions are analyzed 

through the SVM (Support Vector Machine) machine learning method. In addition to SVM, Gaussian classifier 

is used in this research for optimizations. The linear SVM method shows the best model for the classification 

of AMPS. The best performance was shown in class of zero violations as compared with class of one, two, 

three violations. This study anticipated smaller chain dipeptides show high potency against antibacterial drug 

resistance and prevent bacterial infections.  
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Introduction 

Kernel methods are a type of machine learning 

algorithm that incorporates a kernel function to 

model nonlinear relationships. Standard kernel 

methods assume that a given kernel function is 

positive-definite, but recent developments in the 

theory of learning with indefinite kernels have now 

removed this requirement, allowing a much 

broader class of functions to be incorporated into 

kernel methods [1-3]. We study the effectiveness 

of learning with established sequence-similarity 

functions for the classification of antimicrobial 

peptides (AMPs) based on their amino acid 

sequences. We evaluate the ability of the proposed 

methodology to predict both general and species-

specific antimicrobial activity. AMPs, also known 

as host defense peptides, are a class of molecules 

that form an important component of the innate 

immune system [4-6]. These molecules typically 

have certain properties, including cationic, 30-50% 

hydrophobicity, and amphiphilicity. They exhibit 

good antimicrobial activity against a broad range 

of bacteria, viruses, fungi, and parasites. In 

addition, they have an inherently low risk of 

developing antimicrobial resistance. Such broad-

spectrum and rapid antimicrobial activity has 

prompted researchers to consider AMPs as a 

potential remedy to the growing problem of AMR 

[4-8].  

Despite some early success in translating AMP-

based therapies to clinical use, there are many 

challenges that researchers have yet to overcome, 

such as the complex structure-activity relationship 

(SAR) and the high cost and time required for wet-

lab experiments [9] [10]. Many researchers have 

turned to computational approaches, such as 

molecular dynamics (MD) simulations and 

machine learning (ML) algorithms, to speed up the 

discovery and development of potential AMPs [11] 

[12]. Several studies have highlighted the potential 

of ML algorithms in predicting antimicrobial 

activity, dissecting the SAR, and informing the 

drug design of AMPs. A wide range of ML 

algorithms has been used, including random 

forests, support vector machines (SVMs), and 

artificial neural networks [13-19]. Many of these 

algorithms are used in combination with a 

carefully selected set of peptide features, which 

can be divided into two categories: compositional 

and physicochemical. The amino acid composition 

is a simple example of a compositional feature, 

which is a vector containing counts of each amino 

acid in a given peptide [20-24]. There are various 

extensions, such as the reduced amino acid 

composition and the pseudo amino acid 

composition, which take into account composition 

as well as sequence-order information [27]. The set 

of physicochemical features includes peptide 

properties such as the charge, hydrophobicity, and 

isoelectric point [28] [29]. 

Classical arrangement calculations, like the Smith 

Waterman [30] and Needleman- Wunsch [31] 

calculations, are computationally concentrated and 

don't scale well to enormous issues. Many papers 

have upheld the utilization of arrangement-free 

techniques to decide succession comparability 

[19], [32-35]. The outcome of these undertakings 

regardless, of grouping arrangement capabilities, 

are compelling thoughts of natural succession 

similitude that can reflect hereditary, primary, or 

utilitarian comparability and subsequently ought 

not to be ignored. A few investigations have used 

grouping arrangement capabilities for AMP 

expectations. For instance, Wang et al. [36] and Ng 

et al. [37] used the Impact algorithm [38] in a 

grouping model. While these methodologies 

prompted exact models, the Impact calculation is a 

heuristic technique that tracks down just inexact 

ideal arrangements. Subsequently, it is fascinating 

to consider whether similar methodologies 

utilizing the ideal arrangement score would work 

on the models. The SVM is a notable ML 

calculation for grouping and can consolidate a bit 

of capability to learn non-direct characterization 

limits. The piece capability enormously impacts 

the presentation of the subsequent arrangement 

model. At the point when properly standardized, a 

portion capability can be viewed as a 

comparability capability. A valuable bit capability 

ought to create likenesses that are pertinent to the 

issue. Numerous expressive thoughts of similitude 

are not legitimate portion capabilities [39-42], in 

that they are endless, meaning they can't be utilized 

with an SVM. Late improvements have now 

reduced this issue, working with a lot bigger class 

of similitude capabilities to be utilized related to an 

SVM. Loosli et al. [1] present a calculation for 

learning an SVM with endless pieces. Their 

methodology depends on a strategy for adjustment, 

significance there is no assurance of worldwide 

optimality. Then again, the SVM is a calculation of 

endless portions that are ensured to find an 

internationally ideal solution. In this work, we used 

the SVM calculation to evaluate the viability of 

grouping arrangement capabilities for AMP orders. 

We played out an observational examination of 

both the neighborhood arrangement score and the 

AMP datasets from the writing. 

 

Material and Methods 

Materials 

In this study, SVM and Gaussian classifier to use 

for categorize the drugs data set based on their 

ascent. Initially In silico approaches shows 
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different 14 parameters, here we considered 180 

types of drugs (trained data) with 14 features, and 

these features were MI log p, total polar surface 

area (TPSA), molecular weight, violations, number 

of rotatable bonds, volume, enzyme bioactivity 

score (GPCR ligand, ICM, KI, NRL, PI, EI, 

number of hydrogen bond acceptor, number of 

hydrogen bond donor, molar refractivity, Log P. 

These data obtained from SWISS ADME 

predictions online tool (available in 

http://www.swissadme.ch/) [43], Chemi-

informatics Molinspiration software (available in 

https://www.molinspiration.com/cgi-

bin/properties) [44]. 

 

Methods for performance of SVM and 

Gaussian classifier 

In Support Vector Machine, ordering model has 

been developed using SVM algorithm. Total of 

180 peptides sequences classified according to the 

n-violations which were recorded from 

MOLINSPIRATION online tool and 5 anti-

bacterial drugs were considered. The peptides were 

converted into format suitable for SVM algorithm. 

To better classification, we need to do 

preprocessing of the data set, so to do preprocess 

in our data set; we need to make then a numerical 

value. we have some value which is not numeric, 

so based on their nature we can assign them as a 

number value, we here just make a change 0 for 

low value and 1 for high value and at the same time 

we need to rescale our data set, rescale means we 

need to make the range of data set in a fixed value 

because, if our data set is in very large range so, the 

machine learning classifier is not able to perform 

well, to overcome this problem, here we make our 

drug data set in a fixed range value of -10 to 5. 

Since machine learning, we need to extract the 

features manually, so with the help of these 

features we can classify the data to do better 

classification, we need to split our data set into two 

parts namely training and testing. So, to do this 

training and test ratio we used 80:20 ratios. In this 

study 180 peptides with the following mentioned 

14 parameters containing 4 groups Gly-Asp to 

Asp-Val (33 Trained Data set) were in Class-0 

violations as from Table-2, Ala-Asn  to Gly-Asn-

Gly (26 Trained Data set) were in Class-1 

violations as from Table-3, Gly- Asn-Asp to Gly-

Gly-Gly-Gly-Gly-Ser (28 Trained Data set) were 

in Class-2 violations as from Table-4, Gly-Ala-

Arg-Asn to Gly-Gly- Gly-Gly-Val (64 Trained 

Data set) were in Class-3 violations as from Table-

5. Whereas the five drug samples (Cefsulodin, 

Ethambutol, moxifloxacin, linezolid and 

Carbapenem were used name as test data set with 

same 14 parameters. Validate the data through the 

Support Vector Machine (SVM) and Gaussian 

classifier, and check whether the trained data set is 

near the test data set or not. 

 

Results and Discussion 

The result of  the standard drug (Cefsulodin, 

Ethambutol, moxifloxacin, linezolid and 

Carbapenem) used as test data sets for SVM 

algorithm and Gaussian classifier were represented 

as follows: 

 

Table1: Standard drug as Test data set for SVM and Gaussian classifier. 

 
 

The peptides were arranged according to their n-violations number which was recorded by using chemo-

information Molinspiration online tool. In the below mentioned table all the selected peptides shows the class 

of zero violations. 

 

Table-2: Represent the trained data sets of Class 0 violation peptides. 
Trained 

data 

(Peptides) 

MI 

Log 

P 

TPSA 
N-

violations 

GPCR 

ligands 
ICM KI NRL PI EI Mol.wt 

H. 

Bond 

donor 

H. 

Bond 

Acceptor 

Log 

P 

Molar 

refractivity 

Gly-Asp -3.98 129.72 0 0.04 0.17 -0.85 -0.83 0.29 0.24 190.6 4 6 -2.25 40.21 

Gly-Ala -3.16 92.42 0 -0.53 -0.21 -1.29 -1.59 -0.09 -0.21 146.15 3 4 -1.51 33.63 

Gly-Glu -3.71 129.72 0 0.09 0.17 -0.7 -0.64 0.3 0.31 204.18 4 6 -1.93 45.02 

Gly-Lue -1.85 92.42 0 -0.05 0.18 -0.94 -0.76 0.38 0.16 188.23 3 4 -0.58 48.05 

Gly-Ser -4.12 112.65 0 -0.19 0.03 -0.96 -1.29 0.13 0.16 162.15 4 5 -2.26 34.79 

Gly-Cys -3.18 92.42 0 -0.2 -0.08 -1.1 -1.29 0.66 0.46 178.21 3 4 -1.53 41.56 

Gly-Ile -1.87 92.42 0 -0.23 0.04 -0.99 -1.19 0.22 0.08 188.23 3 4 -0.62 48.05 

http://www.swissadme.ch/
https://www.molinspiration.com/cgi-bin/properties
https://www.molinspiration.com/cgi-bin/properties
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Gly-Met -2.7 92.42 0 -0.26 -0.12 -1.43 -1.04 0.25 0.29 206.27 3 4 -0.82 50.83 

Gly-Val -2.38 92.42 0 -0.3 -0.04 -1.03 -1.25 0.12 -0.03 174.2 3 4 -0.86 43.24 

Gly-phe 1.7 92.42 0 0.25 0.24 -0.41 -0.47 0.43 0.27 222.24 3 4 0.23 58.12 

Pro-Gln -3.36 121.52 0 0.39 0.43 -0.18 -0.26 0.82 0.44 243.26 4 5 -1.62 62.47 

Pro-Thr -2.9 98.65 0 0.2 0.27 -0.57 -0.45 0.55 0.35 216.24 4 5 -1.35 55.91 

Pro-Phe -0.83 78.42 0 0.52 0.45 -0.1 -0.11 0.78 0.39 262.31 3 4 0.46 74.43 

Pro-Val -1.51 78.42 0 0.14 0.36 -0.53 -0.64 0.59 0.23 214.26 3 4 -0.29 59.56 

Pro-ile -1 78.42 0 0.17 0.39 -0.51 -0.63 0.64 0.3 228.29 3 4 0.04 64.37 

Pro-Ala -2.29 78.42 0 -0.02 0.3 -0.7 -0.88 0.44 0.11 186.21 3 4 -0.89 49.95 

Pro-Cys -2.31 78.42 0 0.24 0.37 -0.57 -0.66 1.02 0.62 218.28 3 4 -0.93 57.88 

Pro-Met -1.83 78.42 0 0.15 0.26 -0.86 -0.51 0.67 0.46 246.33 3 4 -0.38 67.15 

Pro-Tyr -1.3 98.65 0 0.57 0.47 -0.01 0.09 0.78 0.43 278.31 4 5 0.02 76.46 

Pro-Lys -2.78 104.45 0 0.57 0.65 -0.07 -0.25 0.95 0.59 243.31 4 5 -0.88 67.07 

Ala-Cys -3.28 92.42 0 -0.08 -0.08 -0.92 -1.01 0.83 0.58 192.24 3 4 -1.22 46.37 

Ala-Phe -1.79 92.42 0 0.32 0.2 -0.3 -0.3 0.6 0.37 236.27 3 4 0.05 62.92 

Ala-Ile -2.78 104.45 0 0.57 0.65 -0.07 -0.25 0.95 0.59 104.45 4 5 -0.88 67.07 

Ala-Met -2.8 92.42 0 -0.14 -0.12 -1.23 -0.81 0.45 0.42 92.42 3 4 -0.61 55.64 

Ala-Val -2.48 92.42 0 -0.17 -0.03 -0.83 -1 0.33 0.15 92.42 3 4 -0.6 48.05 

Ala-Tyr 2.27 112.65 0 0.4 0.24 -0.18 -0.06 0.61 0.42 112.65 4 5 -0.54 64.95 

Ala-Trp -1.64 108.21 0 0.65 0.3 0.17 -0.1 0.7 0.5 108.21 4 4 0.06 74.78 

Asp-Ile -2.8 129.72 0 0.24 0.32 -0.45 -0.43 0.71 0.41 246.26 4 6 -0.83 59.44 

Asp-Gly -3.87 129.72 0 0.01 0.19 -0.73 -0.63 0.46 0.25 190.16 4 6 -2.11 40.21 

Asp-Phe -2.62 129.72 0 0.56 0.38 -0.09 0.02 0.83 0.46 280.28 4 6 -0.69 69.5 

Asp-Cys -4.1 129.72 0 0.31 0.31 -0.5 -0.44 1.06 0.73 236.25 4 6 -1.72 52.94 

Asp-Met -3.63 129.72 0 0.22 0.2 -0.79 -0.33 0.73 0.56 264.3 4 6 -1.22 62.22 

Asp-Val -3.3 129.72 0 0.22 0.3 -0.46 -0.44 0.66 0.36 232.24 4 6 -1.39 54.63 

 

The peptides were arranged according to their n-violations number which was recorded by using chemo-

information Molinspiration online tool. In the below mentioned table all the selected peptides shows the class 

of one violations. 

 

Table-2: Represent the trained data sets of Class 1 violation peptides. 

Trained data 

(Peptides) 

MI 

Log 

P 

TPSA 

N-

violation

s 

GPCR 

ligands 
ICM KI NRL PI EI Mol.wt 

H.Bon

d 

donor 

H.Bond 

Acceptor 

Log 

P 

Molar 

refractivity 

Ala-Asn -3.37 135.51 1 -0.01 -0.04 -0.64 -0.64 0.47 0.27 203.2 4 5 -2.14 46.15 

Ala-Gln -4.28 135.51 1 0.11 0.07 -0.51 -0.46 0.52 0.35 217.22 4 5 -1.9 50.96 

Ala-Lys -3.75 118.44 1 0.33 0.34 -0.37 -0.46 0.69 0.52 217.27 4 5 -0.96 55.57 

Asp-Glu -4.49 167.02 1 0.42 0.36 -0.25 -0.1 0.72 0.51 262.22 5 8 -2.12 55.4 

Asp-Thr -4.53 149.95 1 0.22 0.34 -0.55 -0.24 0.62 0.37 234.21 5 7 -2.15 50.98 

Asp-Tyr -3.1 149.95 1 0.6 0.39 -0.01 0.19 0.82 0.49 296.28 5 7 -1.18 71.53 

Asp-Lys -4.45 155.74 1 0.6 0.55 -0.09 -0.07 0.93 0.63 261.28 5 7 -2.02 62.14 

Gly-Ala-Arg   -4.58 185.93 1 0.66 0.41 -0.11 -0.32 1.02 0.5 302.33 6 6 -2.25 74.57 

Gly-Cys-Glu  -4.26 158.82 1 0.51 0.25 -0.04 -0.14 1.08 0.76 307.33 5 7 -1.98 70.37 

Gly-Gln-Gly  -4.46 164.61 1 0.28 0.1 -0.2 -0.21 0.68 0.34 260.25 5 6 -2.5 58.77 

Gly-His-Ile  -2.75 150.2 1 0.65 0.39 0.16 -0.69 0.91 0.61 325.37 5 6 -0.89 82.11 

Gly-Leu-Lys  -2.9 147.54 1 0.56 0.34 -0.06 0.06 0.93 0.45 316.4 5 6 -0.58 82.6 

Gly-Thr-Trp  -2.72 157.54 1 0.65 0.21 0.12 0.05 0.76 0.42 362.39 6 6 -0.94 93.37 

Gly-Tyr-Val  -1.96 141.75 1 0.46 0.25 0.01 0.01 0.74 0.33 337.38 5 6 -0.34 87.18 

Gly-Ala-Asp  -4.44 158.82 1 0.38 0.24 -0.35 -0.42 0.65 0.38 261.23 5 7 -2.31 57.63 

Gly-Gln-Ile  -3.51 164.61 1 0.36 0.14 -0.12 -0.2 0.78 0.34 316.36 3 6 -1.47 77.99 

Gly-His-Lys  -4.42 176.22 1 0.8 0.49 0.3 -0.44 0.97 0.71 340.38 6 7 -1.74 84.81 

Gly-Met-Ser  -4.22 141.75 1 0.31 0.1 -0.49 -0.36 0.74 0.55 293.35 5 6 -1.75 69.42 

Gly-Gln-Lys  -4.83 190.63 1 0.53 0.25 0.05 0.06 0.83 0.43 331.37 6 7 -2.81 80.7 

Gly-His-Phe  -2.57 150.2 1 0.72 0.41 0.26 -0.45 0.86 0.58 359.38 5 6 -0.77 92.17 

Gly-Leu-Ser  -3.38 141.75 1 0.45 0.31 -0.16 -0.16 0.84 0.47 275.3 5 6 -1.58 66.64 

Gly-Met-Trp  -1.66 137.31 1 0.55 0.18 -0.08 -0.1 0.74 0.45 392.47 5 5 0.29 104.6 

Gly-Thr-Val  -3.55 141.75 1 0.31 0.07 -0.34 -0.24 0.7 0.35 275.31 5 6 -1.77 66.64 

Gly-Tyr-Asp  -3.56 179.04 1 0.58 0.32 0.02 0.14 0.79 0.42 353.33 6 8 -1.58 84.14 

Gly-Ala-Glu  -4.24 158.82 1 0.4 0.2 -0.26 -0.3 0.65 0.41 275.26 5 7 -1.87 62.44 

Gly-Asn-Gly  -3.62 164.61 1 0.19 0.03 -0.28 -0.35 0.65 0.28 246.22 5 6 -2.96 53.96 

 

The peptides were arranged according to their n-violations number which was recorded by using chemo-

information Molinspiration online tool. In the below mentioned table all the selected peptides shows the class 

of two violations. 

 

Table-2: Represent the trained data sets of Class 2 violation peptides. 

Trained data 

(Peptides) 

MI 

Log 

P 

TPSA 
N-

violations 

GPCR 

ligands 
ICM KI NRL PI EI Mol.wt 

H.Bond 

donor 

H.Bond 

Accept

or 

Log 

P 

Molar 

refractivity 

Gly-Asn-Asp  -4.51 201.91 2 0.49 0.17 -0.07 -0.06 0.82 0.41 304.26 6 8 -3.42 65.35 

Gly-Asn-Glu  -4.33 201.91 2 0.48 0.14 -0.03 0.01 0.79 0.42 318.29 6 8 -3.11 70.15 

Gly-Gly-Gly-

Gly-Gly 
-2.97 232.78 2 0.02 -0.1 -0.11 -0.13 0.09 

-

0.04 
456.41 6 28 -2.24 66.67 

Gly-Gly-Gly-

Gly-Ala 
-4.29 179.71 2 0.25 0.03 -0.14 -0.26 0.5 0.18 317.3 6 30 -1.85 71.48 

Gly-Gly-Gly-

Gly-Asp 
-4.6 220.09 2 0.26 -0.02 -0.24 -0.05 0.43 0.16 403.34 7 35 -2.53 87.96 

Gly-Gly-Gly-

Gly-His 
-4.5 208.4 2 0.56 0.25 0.14 -0.54 0.67 0.47 383.36 7 33 -1.91 88.11 
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Gly-Gly-Gly-

Gly-Val 
-4.29 237.91 2 0.2 0.04 -0.12 -0.18 0.43 0.14 459.5 8 44 -2.2 106.32 

Gly-Gly-Gly-

Gly-Trp 
-0.69 175.28 2 0.42 0.13 0.2 0 0.75 0.32 416.4 6 34 -0.03 106.25 

Gly-Gly-Gly-

Gly-Ile 
-3.05 179.71 2 0.25 0.06 -0.2 -0.29 0.57 0.21 359.38 6 36 -0.83 85.9 

Gly-Gly-Gly-

Gly-Ser 
-4.84 199.94 2 0.37 0.12 -0.05 -0.19 0.59 0.32 333.3 7 31 -2.88 72.64 

Gly-Gly-Gly-

Gly-Gln 
-4.88 222.81 2 0.33 0.07 -0.09 -0.08 0.58 0.25 374.35 7 35 -1.91 84 

Gly-Gly-Gly-

Gly-Asn 
-4.37 222.81 2 0.31 0.03 -0.1 -0.12 0.6 0.23 360.32 7 33 -2.3 79.19 

Gly-Gly-Gly-

Gly-Cys 
-3.1 217.68 2 0.21 -0.08 0.03 -0.18 0.6 0.25 493.57 9 43 -2.17 115.8 

Gly-Gly-Gly-

Gly-Thr 
-4.67 199.94 2 0.3 -0.01 -0.18 -0.12 0.53 0.26 347.32 7 33 -2.49 77.45 

Gly-Gly-Gly-

Ala-Gly 
-3.94 217.68 2 0.15 -0.11 -0.1 -0.3 0.36 0.02 415.4 7 39 -2.38 95.14 

Gly-Gly-Gly-

Asn-Gly 
-4.34 222.81 2 0.33 0 -0.03 -0.07 0.72 0.24 360.32 7 33 -2.3 79.19 

Gly-Gly-Gly-

Leu-Gly 
-3.77 237.91 2 0.28 0.08 -0.09 -0.01 0.59 0.2 473.5 8 46 -1.81 114 

Gly-Gly-Gly-

Lys-Gly 
-4.94 263.93 2 0.32 0.11 0 -0.02 0.56 0.24 488.5 9 48 -2.03 113.84 

Gly-Gly-Gly-

Met-Gly 
-4.49 237.91 2 0.2 -0.04 -0.28 -0.12 0.53 0.24 491.5 8 45 -2.11 113.91 

Gly-Gly-Gly-

Pro-Gly 
-4.13 208.89 2 0.26 -0.03 -0.08 -0.14 0.51 0.07 414.4 6 41 -2.34 106.55 

Gly-Gly-Gly-

Ser-Gly 
-4.82 199.94 2 0.41 0.12 -0.05 -0.09 0.73 0.36 333.3 7 31 -2.88 72.64 

Gly-Gly-Ala-

Gly-Gly 
-3.94 217.68 2 0.15 -0.11 -0.1 -0.3 0.36 0.02 415.4 7 39 -2.38 95.14 

Gly-Gly-Gly-

Gly-Gly-Gly 
-4.41 208.81 2 0.2 0.01 -0.07 -0.1 0.42 0.17 360.32 7 33 -2.73 79.29 

Gly-Gly-Gly-

Gly-Gly-Ala 
-4.33 243.71 2 0.17 -0.05 -0.16 -0.19 0.46 0.11 472.5 8 47 -1.92 112.27 

Gly-Gly-Gly-

Gly-Gly-Asn 
-4.61 251.91 2 0.26 0.02 -0.08 -0.1 0.52 0.2 417.38 8 38 -2.79 91.81 

Gly-Gly-Gly-

Gly-Gly-Asp 
-4.94 246.11 2 0.34 0.12 -0.11 -0.09 0.53 0.25 418.36 8 37 -2.89 90.76 

Gly-Gly-Gly-

Gly-Gly-gln 
-5.03 251.91 2 0.28 0.06 -0.07 -0.07 0.51 0.22 431.34 5 40 -2.4 96.61 

Gly-Gly-Gly-

Gly-Gly-Ser 
-4.84 199.94 2 0.37 0.12 -0.05 -0.19 0.59 0.32 333.3 7 8 -3.67 72.64 

 

The peptides were arranged according to their n-violations number which was recorded by using chemo-

information Molinspiration online tool. In the below mentioned table all the selected peptides shows the class 

of three violations. 

 

Table-2: Represent the trained data sets of Class 3 violation peptides. 
Trained 

data 

(Peptides) 

MI 

Log 

P 

TPSA 
N-

violations 

GPCR 

ligands 
ICM KI NRL PI EI Mol.wt 

H.Bond 

donor 

H.Bond 

Acceptor 
Log P 

Molar 

refractivity 

Gly-Ala-

Arg-Asn 
-4.86 368.72 3 -0.65 -1.83 -1.59 -1.73 0.03 -1.17 755.83 12 13 -3.39 189.29 

Gly-Asp-

Cys-Gln 
-5.96 573.37 3 -3.82 -3.9 -3.92 -3.92 -3.71 -3.83 

1266.47 
20 123 -1.01 308.21 

Gly-Ile-

Leu-Lys 
-1.21 365.22 3 -3.63 -3.76 -3.77 -3.79 -3.35 -3.68 

1030.32 
12 109 5.61 277.02 

Gly-Ser-

Thr-Trp 
-6.05 708.73 3 -4 -4.04 -4.05 -4.07 -3.96 -4.01 

1477.91 
26 150 -1.44 409.2 

Gly-Tyr-

Val-His 
-4.53 357.54 3 -2.31 -3.32 -3.22 -3.55 -1.44 -2.8 869.98 12 81 0.54 226.05 

Gly-Arg-

Ala-Asn 
-6.48 956.02 3 -4.07 -4.1 -4.11 -4.14 -4.04 -4.08 

2009.13 
29 204 6.35 552.28 

Gly-Gly-

Glu-His 
-5.37 431.64 3 -3.31 -3.69 -3.67 -3.75 -2.82 -3.53 

975.03 
15 98 -2.18 254.4 

Gly-Leu-

Ile-Lys 
-6.05 788.72 3 -4.06 -4.09 -4.11 -4.11 -4.02 -4.06 1924.37 34 224 3.25 596.98 

Gly-Phe-

Met-Pro 
-3.71 298.68 3 -1.82 -3.14 -3.02 -2.9 -0.98 -2.38 

842.97 
10 89 8.31 309.17 

Gly-Thr-

Ser-Trp 
-4.34 432.75 3 -3.6 -3.78 -3.77 -3.79 -3.32 -3.68 1038.13 15 92 0.83 261.88 

Gly-Asn-

Arg-Ala 
-5.39 452.35 3 -3.44 -3.71 -3.74 -3.73 -2.86 -3.58 1008.13 14 93 0.42 253.43 

Gly-Gln-

Cys-Asp 
-6.83 

1113.5

7 
3 -4.13 -4.16 -4.16 -4.18 -4.11 -4.13 2473.65 42 216 -6.75 587.63 

Gly-His-

Glu-Gly 
-5.51 367.21 3 -0.21 -1.22 -0.91 -1.31 0.17 -0.59 712.72 12 65 -1.23 167.66 

Gly-His-

Val-Tyr 
-4.49 376.68 3 -3.31 -3.67 -3.67 -3.75 -3.72 -3.52 972.11 20 127 1.45 344.79 

Gly-Ala-

Asn-Arg 
-5.22 414.53 3 -0.83 -2.04 -1.77 -1.91 -0.12 -1.34 771.88 18 124 -1.71 328.48 
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Gly-Asp-

Gln-Cys 
-5.56 324.52 3 0.53 0.06 -0.03 -0.07 0.98 0.44 577.6 11 54 -0.94 136.45 

Gly-Glu-

His-Gly 
-4.62 288.79 3 0.59 0.21 0.2 -0.31 0.71 0.46 512.5 9 44 -1.73 116.82 

Gly-Ile-Lys-

Leu 
-4.67 487.51 3 -3.84 -3.93 -3.94 -3.98 -3.77 -3.87 1354.7 0 0 0 0 

Gly-Met-

Pro-Phe 
-1.86 382.04 3 -3.73 -3.84 -3.87 -3.9 -3.58 3.76 1141.4 0 0 0 0 

Gly-Ser-

Trp-Thr 
-3.67 359.36 3 -3.64 -3.8 -3.8 -3.81 -3.45 -3.7 1086.2 0 0 0 0 

Gly-Thr-

Ser-Pro 
-5.15 267.1 3 -0.39 -1.52 -1.26 -1.29 0.18 -0.86 722.8 8 69 -2.53 191.33 

Gly-Phe-

Met-Lys 
-2.77 255.06 3 -0.18 -1.14 -0.98 -0.88 0.27 -0.52 701.8 18 125 4.43 370.49 

Gly-Leu-

Ile-His 
-3.86 300.82 3 0.17 -0.69 -0.45 -0.8 0.62 -0.08 653.7 10 64 0.12 162.48 

Gly-Gly-

Glu-Gln 
-5.68 410.72 3 -1.51 -2.81 -2.56 -2.56 -0.77 -1.96 834.9 0 0 0 0 

Gly-Cys-

Asp-Asn 
-5.97 847.93 3 -4.09 -4.12 -4.13 -4.14 -4.06 -4.09 2095.1 0 0 0 0 

Gly-Arg-

Ala-Val 
-3.6 244.12 3 0.5 0.05 -0.07 -0.19 0.8 0.26 548.6 8 54 1.61 143.52 

Gly-Tyr-

Trp-Thr 
-3.87 415.68 3 -3.72 -3.84 -3.84 -3.84 -3.6 -3.75 1136.3 17 95 2.61 293.72 

Gly-Ser-

Pro-Phe 
-4.88 368.88 3 -2.27 -3.29 -3.31 -3.43 -1.35 -2.81 873 12 88 1.79 233.13 

Gly-Ile-Gly-

Glu 
-3.48 414.9 3 -3.44 -3.73 -3.73 -3.73 -2.9 -3.57 986.1 0 0 0 0 

Gly-Gln-

Cys-Tyr 
-5.37 434.19 3 -3.62 -3.78 -3.78 -3.79 -3.34 -3.68 1090.2 0 0 0 0 

Gly-Asn-

Arg-Gly 
-5.8 474.23 3 -1.07 -2.32 -2.01 -2.17 -0.39 -1.59 785.9 18 100 -0.1 272.01 

Gly-Gly-

Gly-Gly-

Arg 

-5.16 302.32 3 0.39 0.18 -0.06 -0.13 0.61 0.28 516.5 10 50 -2.4 120.23 

Gly-Gly-

Gly-Gly-

Tyr 

-2.32 244.83 3 0.34 -0.32 -0.11 -0.18 0.44 0.02 595.6 9 47 0.68 151.75 

Gly-Gly-

Gly-Gly-

Phe 

-1.9 208.81 3 0.32 -0.06 -0.07 -0.04 0.47 0.15 540.6 7 45 0.49 137.87 

Gly-Gly-

Gly-Gly-Pro 
-5.73 348.08 3 -0.44 -1.49 -1.23 -1.29 0.07 -0.88 728.7 11 67 -5.14 174.32 

Gly-Gly-

Gly-Gly-

Glu 

-5.2 312.51 3 0.28 -0.06 -0.09 -0.02 0.47 0.2 561.5 10 50 -2.76 124.29 

Gly-Gly-

Gly-Gly-

Lys 

-4.78 289.96 3 0.4 0.06 0.2 -0.04 0.58 0.29 517.54 10 52 -2.57 120.94 

Gly-Gly-

Gly-Gly-

Met 

-3.92 208.81 3 0.2 -0.02 -0.37 -0.18 0.5 0.27 434.5 7 40 -1.61 101.3 

Gly-Gly-

Gly-Arg-

Gly 

-5.15 302.32 3 0.14 0.16 -0.01 -0.09 0.69 0.29 516.5 10 50 -2.4 120.23 

Gly-Gly-

Gly-Asp-

Gly 

-5.56 368.72 3 0.18 -0.61 -0.48 -0.63 0.69 -0.06 677.7 13 62 -2.76 156.97 

Gly-Gly-

Gly-Cys-

Gly 

-4.83 237.91 3 0.27 0.05 0.01 -0.1 0.72 0.37 509.6 10 44 -2.63 117.37 

Gly-Gly-

Gly-Gln-

Gly 

-5.85 468.02 3 -1.26 -2.54 -2.21 -2.34 -0.34 -1.78 800.8 15 79 -2.23 191.12 

Gly-Gly-

Gly-Glu-

Gly 

-4.53 324.45 3 0.08 -0.6 -0.4 -0.24 0.54 -0.1 630.6 10 55 -3.66 140.43 

Gly-Gly-

Gly-His-Gly 
-5.02 295.69 3 0.39 0.02 0.11 -0.36 0.54 0.31 554.5 10 48 -3.39 125.96 

Gly-Gly-

Gly-Ile-Gly 
-5.39 424.93 3 -1.12 -2.34 -2.06 -2.22 -0.42 -1.59 785.9 14 80 -1.15 111.13 

Gly-Gly-

Gly-Phe-

Gly 

-4.34 273.33 3 0.46 0.08 -0.01 -0.05 0.76 0.28 549.6 9 51 -0.3 136.91 

Gly-Gly-

Gly-Thr-

Gly 

-5.76 377.02 3 -0.37 -1.28 -1 -0.94 0.06 -0.68 707.7 14 68 -5.22 160.24 

Gly-Gly-

Gly-Trp-

Gly 

-3.68 297.49 3 -0.62 -0.18 -1.39 -1.19 -0.17 -1.15 737.8 11 61 -0.48 188.23 

Gly-Gly-

Gly-Tyr-

Gly 

-0.08 194.82 3 0.18 -0.14 -0.05 -0.02 0.27 0.04 538.6 7 43 -0.4 159.8 

Gly-Gly-

Gly-Val-

Gly 

0.68 204.05 3 0.18 -0.14 -0.11 -0.1 0.53 0.11 550.61 7 52 1.16 140.32 
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Gly-Gly-

Gly-Gly-

Gly-Arg 

-5.16 302.32 3 0.39 0.18 -0.06 -0.13 0.61 0.28 516.52 10 50 -2.4 120.23 

Gly-Gly-

Gly-Gly-

Gly-Cys 

-3.38 275.88 3 0.16 -0.29 -0.04 -0.21 0.48 0.13 607.67 11 53 -3.15 141.03 

Gly-Gly-

Gly-Gly-

Gly-Glu 

-5.2 312.51 3 0.28 -0.06 -0.09 -0.02 0.47 0.2 561.5 10 50 -2.76 124.29 

Gly-Gly-

Gly-Gly-

Gly-His 

-4.71 353.89 3 -1.07 -2.34 -1.91 -2.4 -0.42 -1.55 780.8 12 74 -1.54 189.64 

Gly-Gly-

Gly-Gly-

Gly-Ile 

-1.97 319.41 3 -1.21 -2.6 -2.25 -2.27 -0.6 -1.7 799.9 11 75 0.43 202.72 

Gly-Gly-

Gly-Gly-

Gly-Leu 

-3.49 294.12 3 0.22 -0.28 -0.17 -0.22 0.81 0.18 571.6 10 59 -0.98 140.69 

Gly-Gly-

Gly-Gly-

Gly-Lys 

-4.78 289.96 3 0.4 0.06 0.2 -0.04 0.58 0.29 517.5 10 52 -2.57 120.94 

Gly-Gly-

Gly-Gly-

Gly-Met 

-3.92 208.81 3 0.22 0.02 -0.32 -0.09 0.55 0.28 508.62 7 47 -0.49 123.31 

Gly-Gly-

Gly-Gly-

Gly-Phe 

-1.9 208.81 3 0.32 -0.06 -0.07 -0.04 0.47 0.15 540.58 7 45 0.49 137.87 

Gly-Gly-

Gly-Gly-

Gly-Pro 

-5.73 348.08 3 -0.44 -1.49 -1.23 -1.29 0.07 -0.88 728.72 11 67 -5.95 174.32 

Gly-Gly-

Gly-Gly-

Gly-Thr 

-5.28 315.29 3 0.37 -0.25 -0.11 -0.46 0.54 0.18 598.57 11 12 -4.83 136.73 

Gly-Gly-

Gly-Gly-

Gly-Trp 

-5.3 345.76 3 -1.75 -3.19 -2.66 -3.06 -1.1 -2.26 822.87 11 76 -0.45 200.79 

Gly-Gly-

Gly-Gly-

Gly-Tyr 

-2.23 244.83 3 0.34 -0.32 -0.11 -0.18 0.44 0.02 595.61 9 47 0.68 151.75 

Gly-Gly-

Gly-Gly-

Gly-Val 

-3.22 325.2 3 -1.33 -2.63 -2.25 -2.42 -0.6 -1.86 790.88 11 75 -0.27 197.5 

 

Graph-1: Representation of SVM classification of 

anti-microbial peptides as compared with standard 

drug Cefsulodin 

 
 

As from graph-1, shows the SVM algorithm result 

of standard drug Cefsulodin in which the similarity 

index above 90% with the class of zero violations 

(Gly-Asp to Asp-Val) for antimicrobial peptides as 

from Table-2. Through the above mention of 

graph, we may predict the best performance 

activity of class zero violations peptides for 

prevention of bacterial infection as well as the 

antimicrobial drug resistance. Although, other 

peptides of classes one, two, and three violation 

showed the least activity against the microbial 

infection and multi-drug resistance. 

 

Graph-2: Representation of SVM classification of 

anti-microbial peptides as compared with standard 

drug Ethambutol 

 
 

In graph-2, shows the SVM algorithm result of 

standard drug Ethambutol in which the similarity 

index above 90% with the class of zero violations 

(Gly-Asp to Asp-Val) for antimicrobial peptides as 

from Table-2. Through the above mention graph, 

we may predict the best performance activity of 

class zero violations peptides for prevention of 

bacterial infection as well as the antimicrobial drug 

resistance. Although, others peptides of class one, 

two, three violations shows the least activity 

against the microbial infection. 
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Graph-3: Represents the graphically, SVM 

classification of anti-microbial peptides as 

compared with standard drug Moxifloxacin 

 
 

As per the graph-3, shows the SVM algorithm 

result of standard drug Moxifloxacin in which the 

similarity index above 90% with the class of zero 

violations (Gly-Asp to Asp-Val) for antimicrobial 

peptides as from Table-2. Through the above 

mention graph we may predict the best 

performance activity of class zero violations 

peptides for prevention of bacterial infection as 

well as the antimicrobial drug resistance. 

Although, others peptides of class one, two, three 

violations shows the least activity against the 

microbial infection. 

 

Graph-4: Representation of SVM classification of 

anti-microbial peptides as compared with standard 

drug Linezolid 

 
 

In graph-4, shows the SVM algorithm result of 

standard drug Linezolid in which the similarity 

index above 90% with the class of zero violations 

(Gly-Asp to Asp-Val) for antimicrobial peptides as 

from Table-2. Through the above mention graph, 

we may predict the best performance activity of 

class zero violations peptides for prevention of 

bacterial infection as well as the antimicrobial drug 

resistance. Although, others peptides of class one, 

two, three violations shows the least activity 

against the microbial infection. 

 

Graph-5: Represenation of SVM classification of 

anti-microbial peptides as compared with standard 

drug Carbapenem 

 
 

In the graph-5, shows the SVM algorithm result of 

standard drug Carbapenem in which the similarity 

index above 90% with the class of zero violations 

(Gly-Asp to Asp-Val) for antimicrobial peptides as 

from Table-2. Through the above mention graph 

we may predict the best performance activity of 

class zero violations peptides for prevention of 

bacterial infection as well as the antimicrobial drug 

resistance. Although, others peptides of class one, 

two, three violations shows the least activity 

against the microbial infection. 

 

Graph-6: Representation of Gaussian 

classification of anti-microbial peptides as 

compared with standard drug Cefsulodin 

 
 

The graph-6, shows the Gaussian classifier result 

of standard drug Cefsulodin in which the similarity 

index above 90% with the class of zero violations 

(Gly-Asp to Asp-Val) for antimicrobial peptides as 

from Table-2. Whereas, the class of three 

violations (Gly-Ala-Arg-Asn to Gly-Gly- Gly-

Gly-Val) as from Table-5 also showed the 

similarity score above 90% as compared with 

Cefsulodin. Through the above mention graph we 

may predict the best performance activity of class 

zero violations peptides for prevention of bacterial 

infection as well as the antimicrobial drug 

resistance. Although, others peptides of class one 
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and two violations shows the least activity against 

the microbial infection. 

 

Graph-7: Representation of Gaussian 

classification of anti-microbial peptides as 

compared with standard drug Ethambutol 

 
 

In the graph-7, shows the Gaussian classifier 

result of standard drug Ethambutol in which the 

similarity index above 90% with the class of zero 

violations (Gly-Asp to Asp-Val) for antimicrobial 

peptides as from Table-2. Whereas, the class of 

three violations (Gly-Ala-Arg-Asn to Gly-Gly- 

Gly-Gly-Val) as from Table-5 also showed the 

similarity score above 80% as compared with 

Ethambutol. Through the above mention graph we 

may predict the best performance activity of class 

zero violations peptides for prevention of bacterial 

infection as well as the antimicrobial drug 

resistance. Although, others peptides of class one 

and two violations shows the least activity against 

the microbial infection. 

 

Graph-8: Representation of Gaussian 

classification of anti-microbial peptides as 

compared with standard drug Moxifloxacin 

 
 

In the graph-8, shows the Gaussian classifier 

result of standard drug Moxifloxacin in which the 

similarity index above 90% with the class of zero 

violations (Gly-Asp to Asp-Val) for antimicrobial 

peptides as from Table-2. Through the above 

mention graph we may predict the best 

performance activity of class zero violations 

peptides for prevention of bacterial infection as 

well as the antimicrobial drug resistance. 

Although, others peptides of class one, two and 

three violations shows the least activity against the 

microbial infection. 

 

Graph-9: Representation of Gaussian 

classification of anti-microbial peptides as 

compared with standard drug Linezolid 

 
 

The graph-9, shows the Gaussian classifier result 

of standard drug Linezolid in which the similarity 

index above 90% with the class of zero violations 

(Gly-Asp to Asp-Val) for antimicrobial peptides as 

from Table-2. Through the above mention graph 

we may predict the best performance activity of 

class zero violations peptides for prevention of 

bacterial infection as well as the antimicrobial drug 

resistance. Although, others peptides of class one, 

two and three violations shows the least activity 

against the microbial infection. 

 

Graph-10: Representation of Gaussian 

classification of anti-microbial peptides as 

compared with standard drug Carbapenem 

 
 

In the graph-10, shows the Gaussian classifier 

result of standard drug Carbapenem in which the 

similarity index above 90% with the class of three 

violations (Gly-Ala-Arg-Asn to Gly-Gly- Gly-

Gly-Val) for antimicrobial peptides. As from 

Table-5 Through the above mention graph we may 

predict the best performance activity of class zero 

violations peptides for prevention of bacterial 

infection as well as the antimicrobial drug 

resistance. Although, others peptides of class zero, 

one and two violations shows the least activity 

against the microbial infection. 
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In the both SVM and Gaussian classifier, we found 

that counteracting of class 0 drugs (33 trained data 

sets of peptides) were found to be the most 

promising lead for treatment of infection caused by 

bacterial, fungal including mycobacterial as well 

as for multi-drug resistance problem, which was 

clearly evidenced with all graphical representation 

the composition of all classes were depicted in both 

graphs. 

 

Conclusion 

Support vector machine and Gaussian classifier are 

the informatics technology that helps in the 

determination of antimicrobial peptides (AMPs). 

The SVM-based method with the linear kernel 

function was found to be the best model for the 

classification of AMPS. Prediction accuracy varied 

in all classes of peptides. The best performance 

was obtained from the class of zero violations 

peptides as trained data set, which indicated the 

best prediction performance in the classifier 

compared with the standard drugs and all other 

classes of peptides. The best potent dipeptide lead 

obtained from the artificial intelligence (AI) 

approach through the SVM classifier (Gly-Asp to 

Asp-Val) of 33 peptides  belongs to the  Class-0 

violations which of trained data sets. The same 

results have been coinciding with by the using of 

Gaussian classifier machine learning tool of (Gly-

Asp to Asp-Val) belongs to the Class-0 violations 

which of trained data sets. The results are 

completely different for both classifiers with 

regards to standard Carbapenem through AI 

approach with class-3 peptide drugs as second 

most potent drugs as from Table-2. This developed 

model was used for the identification of the most 

promising lead as a peptide. Meanwhile, 

computational prediction is a very complementary 

method but does not replace laboratory 

experiments. In this study, identified peptides of 

the class-0 violations peptides category were used 

to confer and minimized bacterial infection or 

prevention antibacterial drug resistance as per the 

SVM classifier and Gaussian classifier, which will 

be an eye opener for any researcher to proceed the 

right treatment practical investigation for the 

tuberculosis and broad spectrum microbial 

infections in near future. 
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