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Abstract 

 

An active study field in software engineering is software 

defect prediction. Before the testing phase even begins, the 

defect-prone modules are identified using the defect 

prediction approach. An effective defect prediction model 

utilizes a few software metrics in order to improve defect 

prediction.  Metrics-based modules enhance software 

quality, cut costs, and enable efficient resource allocation. 

Employing classification of defect data with a classifier 

will increase the effectiveness of defect prediction. 

Software metrics like Halstead metrics, McCabe's metrics, 

and LOC based metrics of each module is measured and 

recorded as a dataset. In this study a real time software 

project dataset KC1 is taken from NASA Metrics Data 

Program. Naive Bayes algorithm, Support Vector 

Machine algorithm, K Nearest Neighbour algorithm and 

NB Simple algorithm are used as classifiers. The 

classifications performance is measured using Exactness, 

Accuracy, Recollection and F Measure. This paper 

concludes for the used defect dataset an accuracy of 98.89 

is obtained with Support Vector Machine algorithm as the 

best classifier. 

 

Keywords: Software Defect Prediction, Software Metrics, 

Classifiers, Accuracy  
 

1.Introduction 
Software engineering is an active industry where everyday 

humans need is demandingly converted into software with 

high reliability. Robust software reduces time and effort spent 

by the customers. There can be several reasons for the failure 

of a software functionality. One among them is software 

defect. Early defect detection in the software development life 

cycle improves the software’s quality.. All facets of software 

production are addressed by the field of software engineering. 

Software engineers should take a methodical and organised 

approach to their work and employ the right tools and 

approaches depending on the issue at hand, the limitations of 

the development process, and the available resources. 

Software engineering is concerned with every step of the 

software development process, from the initial phases of 

system specification to the system's maintenance after it has 

been put to use. The quality of software is described as 

compliance with openly stated functional and performance 

objectives, explicitly specified development standards, and 

implicit qualities that are anticipated of any professionally 

built software. Profound categorization of defect modules is 

needed. Simple definition of a defect is "Flaws in the software 

development process that would result in the software failing 

to satisfy the desired expectations." [1]. 

phases on which each phase has entry and exit criteria. The 

entire framework is suitable for the process management. 

SDLC has the below defined framework phases. 

 

2.Literature Review 

Majority of the reliable and robust software happens 

identifying the defect at the early stage. This is possible only 

when a proper classification method is used in the initial 

stage. There are researchers who proved the efficiency of the 

software defect prediction incorporating various classification 

models. The impact of the defect, the risk, and the dependency 

connected to the projected or forecasted flaws and the 

extension of the work to assess the various defect prediction 

methods described by Shihab [2]. 

Gayatri et al [3] described a sharp increase in the need for 

software quality estimation. As a result, testing-related 

difficulties are becoming quite important. Reliability, 

Functionality, Fault Proneness, Reusability, and 

Comprehensibility are the SQA qualities for software. Defect 

prediction or fault proneness is a crucial concern among these. 

It can be used to gauge the standard and level of client 

satisfaction, as well as the quality of the final product.  

The SDP Methods are those that make use of test data to 

forecast future software flaws. Software metrics and the 

software's defect-prone modules are correlated with one 

another. Software metrics are evaluated in this work as 

independent variables throughout the Software Development 

Life Cycle (SDLC), while faulty or non-faulty software is 

evaluated as a dependent variable was proposed by Prasad et 

al [4] 

Jing et al. [5] described the classification and prediction of 

software defects namely the Cost-sensitive Discriminative 

Dictionary Learning (CDDL) approach. The performance of 

all the comparative methods was assessed using the widely 

used datasets from the NASA projects as test data. The 

experimental results demonstrated that, in comparison to a 

number of representative state-of-the-art defect prediction 

methods, the CDDL methodology was superior. 

Wang et al. [6] used a classification method generated from 

the data of prior development projects, classifiers divide 

modules that are characterized by a set of software complexity 
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metrics, code attributes or features into defect prone and non-

defect prone groups. He used the size of the code, complexity 

of Halstead, and cyclomatic complexity of McCabe's. because 

they are well-known indicators of software difficulty. 

3. Methodology 

This section explains the few classification methods Naïve 

Bayes Classifier, Support Vector Machine, K Nearest 

Neighbour and NB Simple. Software Product Metrics are used 

in these classifiers are also discussed. The classifiers Naïve 

Bayes, K Nearest Neighbour, Support Vector Machine and 

NB Simple are used on the dataset KC1.The performance of 

the defect prediction classifiers are evaluated. KC1 a public 

dataset specifically consist software metric-based methods for 

the prediction of software defect found in the NASA Metrics 

Data Program (MDP).  

Each collection of data corresponds to a software system or 

subsystem used by NASA. The dataset includes fault statistics 

and static code metrics for each associated module. This 

dataset is used to evaluate a method's prospective real-world 

performance. KC1 dataset implements with a Storage 

Management System for collecting and processing ground 

station data. It includes McCabe and Halstead features 

including code extractors and module-based controls.[7] 

3.1 Software Metrics 

Program complexity and software development time estimates 

have been made using software metrics. A lot of research 

done to try and find an answer to the hot question, "How to 

anticipate the quality of software through software metrics, 

before it is being deployed?" Numerous publications that 

support statistical techniques and measures that claim to 

address the quality issue are available. Software metrics 

typically clarify quantitative measurements of the software 

product or its requirements Rawat et al. [7] During 

Developmental Life Cycle (SDLC), software metrics are 

monitored as independent variables, with faulty or non-faulty 

software being the dependent variable. The Software Defect 

Prediction Methods are those that make use of test data to 

forecast future software flaws. Software metrics and the 

software's defect-prone modules are interrelated with one 

another.[8]. Software metrics are of two types Product Metrics 

and Process Metrics. Product metrics are used for 

measurement in different stages of Developmental Life Cycle 

of the software (SDLC). The below table describes the 

software metrics used in this investigation in specific to KC1 

dataset of ground data. 

3.1.1 Lines of Code 

The standard metric for calculating programme size is lines of 

code. As a result, it measures the software's size. It is used as 

a metric to determine the degree of programme complexity 

and can be calculated in a number of ways, including total 

lines, lines with comments, lines with executable code, and 

lines that include both code and comments for each module. 

 

Table 1 LOC Metrics used in KC1 dataset 

Metric Used Description 

LOC Lines of Code 

LOCode Total number of comment lines 

LOComment Total no of executable codes 

LOBlank Total number of blank lines 

LOCode & Comment 

Total number of Lines of code and 

comment 

3.1.2 McCabe Complexity Metrics 

3.1.2.1 Cyclomatic Metrics 

A Control Flow Graph is developed a metric used to assess 

the program's sequential independent routes. It aids in 

determining the program's complexity. The programme 

statement is represented by nodes, while its flow is 

represented by edges. Generally given as V(g) where E is the 

edge and N is the node. 

V(G) = E – N + 2 

3.1.2.2 Essential Metrics 

It is the metric where the D-Structured prime sub flowgraph is 

eliminated, thus reducing the flowgraph. One entrance and 

one exit sub flowgraph make up the D-Structured prime 

flowgraph, which is a graph. By removing the primary 

flowgraph, this measure aids in the identification of 

unstructured flowgraphs. This complexity is evaluated using. 

m determines the sub-flow graphs 

ev(G) = V(G) – m 

3.1.2.3 Design Metrics 

Design Complexity eliminates decisions and nodes that do not 

affect the calling control over a module's immediate 

subordinates. It determines the number of decision logic in 

subroutine calls. Consequently, measuring the interaction 

between the subroutines is helpful. Denoted as iv(g). 

Table 2 McCabe’s Metrics used in KC1 dataset 

McCabe Complexity Metrics 

v(g) cyclomatic complexity 

ev(g) essential complexity 

iv(g) design complexity 

 

3.1.3 Halstead Complexity Metrics 

Based on the operands and operators employed in the 

programme, Halstead metrics measures the programme. 

Table 3 Halstead’s Metrics used in KC1 dataset 

Halstead Metrics 

n Total no of operators + operands 

v Halstead volume 
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l Halstead Program level 

d Halstead difficulty 

i Halstead intelligence 

e Halstead effort 

b Halstead error estimate 

t Halstead’s time estimator 

uniq_Op unique operators 

uniq_Opnd unique operands 

total_Op total operators 

total_Opnd total operands 

branchCount branch count 

 

3.2 Classification Methods 

3.2.1 Naïve Bayes (NB) 

Defect prediction is treated as binary classification in an NB 

technique. It analyses past software module data to train and 

build a predictor, and it will decide whether or not the new 

module has flaws depending on the prediction. A software 

module is selected to serve as the training and prediction 

object unit by the Naive Bayes Prediction (NBP) approach. "A 

software module is a programme unit that is discrete and 

identifiable with regard to compilation and combining with 

other units," according to the IEEE definition. The Module is 

also a logically separable part of a program.[9] Naïve Bayes 

classification algorithm follows Bayes Rule: 

            ∏       

 

   

 

3.2.2 K-Nearest Neighbour (KNN) 

The voting system is the foundation for how this classifier 

operates. With the use of previously identified data samples, 

referred to as the nearest neighbour, and samples that are 

assigned using the voting procedure, KNN locates new or 

unidentified data samples. The classification of the data 

sample involves participation from more than one nearest 

neighbour. KNN is known as a "lazy learner" since it has a 

slow rate of learning. KNN is a clustering and classification 

algorithm. A newly reported problem is classified using a 1-

Nearest Neighbour classifier based on the severity of the most 

similar report from the training set.[10] KNN classifier 

follows the Euclidean distance given as 

       √∑       
 

 

   

 

The k Nearest Neighbour classification algorithm identifies a 

group of k entities in the data used for training the dataset that 

are near to the input and classifies it using the majority of that 

group's class. [11] 

3.2.3 Support Vector Machine (SVM) 

A hyper-plane is identified in the input space to divide the 

sample data into two classes. It maximises the distinction 

between the classes. By utilising the kernel function theory, 

SVM performs effectively for the linearly inseparable 

categorization of data samples. There are many kernel 

functions that can be used to map data samples to higher 

dimension feature spaces, such as Gaussian, Polynomial, and 

Sigmoid. The data samples for the various classes are then 

divided using a hyper-plane determined by SVM feature 

space.[12] For the categorization of linearly and nonlinearly 

separable data, this is a preferable option. SVM boosts its 

capacity to generalise by adhering to the Structural Risk 

Minimization (SRM) concept and reducing risk during 

training. The data points is given as below equation  

                                       

By dividing hyperplane, it can see this training data that takes 

        

3.2.4 NB Simple 

A Naive Bayes classifier, where the normal distribution is 

used to model the numerical properties. A continuous value 

has a probability distribution depicted as normal distribution. 

The same has values that are symmetrically distributed largely 

around the mean [13]. 

 

3.2.4.1 Evaluation Methods 

Performance metrics can be used to assess how well the defect 

prediction method is working. Accuracy, Recall, Precision, 

and F-Measure are the performance measures employed in 

this work. 

Confusion Matrix 

A visual of confusion matrix forms the basis for the 

performance assessment for the classifiers 

 

Accuracy 

It is the proportion of accurately predicted faulty modules to 

all predicted modules. The result is projected as a percentage. 

          
     

           
     

Recall 

It is the percentage of all defect prone modules that were 

accurately forecasted as units. It goes by the name of 

sensitivity. 

        
  

     
 

 

 PREDICTED 

ACTUAL 

True Positive (Tp) False Negative (Fn) 

False Positive (Fp) True Negative (Tn) 
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Precision 

It is the percentage of all forecasted defective modules that 

were accurately identified as defective units. 

           
  

     
 

F-Measure 

It is an evaluation of the precision of a model on a dataset. 

           
                    

                
 

 

Table 5 Confusion Matrix of Classifiers for Defect 

Prediction 

4. Results and Discussion 

The experimental results show the classifiers Naïve Bayes has 

generated an accuracy percentage around 86 whereas the 

Support Vector Machine has given 98.8 percentage. 

Comparatively the KNN has proved with accuracy level 97.6 

percentage and NB Simple has given 83.8 lowest performance 

among other three on the data given. Accuracy, Recall, 

Precision and F-Measure is calculated using Weka Tool. The 

below table shows the outcome of the classification prediction 

accuracy. 

Table 5 Performance Measures of Classifiers on KC1 

Dataset 

Classifier 

Correctl

y 

Classifie

d 

Instances 

Accurac

y 

Precisio

n 

Recal

l 

F 

Measur

e 

Naïve 

Bayes 
544 85.94 0.843 0.859 0.841 

Support 

Vector 

Measure 

626 98.89 0.989 0.989 0.989 

K Nearest 

Neighbou

r 

618 97.63 0.976 0.976 0.976 

NB 

Simple 
531 83.88 0.885 0.839 0.852 

Figure 1 Performance Accuracy of Classifiers 

 

5.Conclusion 

This paper is developed to understand the best classifier for 

the data classification on the defect data. Classifiers like 

Naïve Bayes, Support Vector Machine, K Nearest Neighbour 

and NB Simple were tested on the KC1 dataset. The 

preliminary study with the performance measures like 

accuracy, recall, precision, and F-Measure were calculated 

and analysed in order to assess the defect prediction's 

performance. The performance accuracy measure has proved 

Support Vector Machine does a best classification with an 

accuracy of 98.89 %. Further this study can be extended with 

the best classifier SVM the necessary feature can be selected 

by optimizing to find the best fit using fitness function. 
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NB Simple  

Classifier 

Naïve 

Bayes 

Classifier 

Support 

Vector 

Machine 

K Nearest 

Neighbour 

 PREDICTED VALUES 

ACTUAL 
440 84 505 19 521 3 518 6 

18 91 70 39 4 105 9 100 


