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The evolution of functions has been collated in Pythagorean Neutrosophic Refined sets in this article using
a dynamical approach, leading rise to Pythagorean Neutrosophic Refined Orbit Topological space. With the help of
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1.Introduction

Since the concept of the fuzzy set was initially put forward by Zadeh[1], the fuzzy concept has encroached
upon practically all fields of Mathematics.The fuzzy set concept is accepted because it better manages
uncertainty.As a result, Atanassov[2] developed an extension of fuzzy sets called intuitionistic fuzzy sets that deals
with the degree of membership and non-membership.Neutosophic sets, which are a generalization of intuitionistic
fuzzy sets, were developed by Smarandache[3-5].

The notions of intuitionistic fuzzy orbit topological space by Priscilla and Irudayam [6] and fuzzy orbit set
by Majeed and EI-Sheikh [7] were introduced. Madhumathi was the first to present the idea of a neutrosophic orbit
[8].With the proof of certain fundamental work, the Pythagorean Neutrosophic Refined Orbit Topological space was
also introduced in this study.

2.Preliminaries

DEFINITION: 2.1]9]

Let U be a Universe. A Pythagorean Neutrosophic Refined Set can be defined as follows:
Pong={ <X, (T3 (X), T (X), T (X), ... TE (X)) , (I (XD, I3 (XD, IR (X)), ... IEX)) ,
(FAX), F3(X), F3(X), .....FE(X))>: x € U}

Where T3 (X), T? (X), T3 (X), .....TK (X): U - [0,1],
IE(X), 3(X), I3(X), .....IE(X) : U - [0,1] and
FA(X), F3(X),F3(X), .....F§(X): U - [0,1] such that
And 0 < (T§ (X)) +(IF (X))* + (FF (X))* < 2

for j =1,2,3,...p and for any X € U .T¥ (X)is the degree of membership sequence, I5 (X)is the degree of
indeterminacy membership sequence and FX (X)is the degree of non-membership sequence.

DEFINITION: 2.2][9]
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Let X be a non empty set in U,

Peyg ={ <X, (T (X), TF (X), T (X), ... TE (X)), Up(XD, IF(X), IB(X), ... IEXD)
(FE(X), F2(X),F3 (X)), .....FE(X))>: x € U}
Qeng ={ <X, (TYCO, TG, TFX), ... TE X)), (15X, 1500, 3 (X, ... I§X))
(F§X), F5(X), F§(X), .....F§ (X))> x € U}
are Pythagorean Neutrosophic Refined sets (PNRS) in U.
The union of Ppyg and Qpyyis defined as Follows :
Pk U Qpwr={ <X, (T3 (X), Tq (X)), (TE(X), TE (X, -..... (TF (X), T§ (X)),

t((13 00, 130, (B CO, XD, .. TE GO, 15 (X)),

((Fp (X), F§ (X)), (FE (X), F§ (X)), ... (F§ (XD, F§ (X))>: x € U}.
The intersection of Ppyp and Qpyp is defined as Follows:
Peng N Qpng={ < %, t((T3 (X), Tg (X)), (TF (X), T§ (X), ... (TE (X), T§ (X)),

(1 G0, 10O, TR GO IFCO, e UECO, I X)),

s(( Fp (X), Fg (X)), (FE (X), F§ (X)), ... (F§ (X), F§ (X))> : x € U}.
DEFINITION:2.3[10]

A Pythagorean Neutrosophic Refined topology (PNRT) is a non-empty set X is a family t of a Pythagorean
Neutrosophic Refined sets in X satisfying the following conditions

a. (PNRT 1) OPNRS!IPNRS eT
b.  (PNRT 2)U Gpygs, et forevery {Gpygssicj} St
C. (PNRT 3) PPNRS1 n PPNRSZ et for any PPNR51' PPNRSZ eT

In this case (X,1) is called a Pythagorean Neutrosophic Refined topological space.
Definition:2.4[10]

1) PNRcl(Apyr) =N { Apyr S Ppyr, Where Ppyr is a collection of Pythagorean Neutrosophic Refined closed
sets in X(PNRCS)}

2) PNRint(Apyr) = U {Qpnrs S Apnr » Where Qpyris a collection of Pythagorean Neutrosophic Refined open
sets in X(PNROS)}

Definition:2.5[11]
Orbit of a point u of U under the mapping fis 0" (u) = {u, f(u), f2(u),....... }

Definition:2.6[8]
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Let U be a non empty set and f: U— U be any mapping . Let a be any neutrosophic set in U. The
Nuetrosophic orbit O®¢(a) under the mapping f, 0"r(a) ={ (a, f(a), f2(a),....... 1,0%¢1(a) ={ (a, f(a),
f2(a),....... 1,0k (a) ={ (a, f(a), f*(a),....... } fora € U.

3.Pythagorean Neutrosophic Refined Orbit Set
Definition:3.1

Let Xpp be anonempty set ,hppn: Xpaz = Xpaz De any mapping. Let pbe any Pythagorean
Neutrosophic Refined set in X. The Pythagorean Neutrosophic Refined Orbit O™ of p under the mapping hpy - is

defined as 0™ hpyg (p) = (p, 0®hppz' (), 0®hpyz' (p), 0% hpyz” (p)) WhereO®hpyz" (p) =

{t(p, h?NR(T)l (p), h?mz(r)z ©),-..hpnr ey (P}

o*® h.’PNRI (p) =

{s(p, hspmzu)l (0), howra ? ), ~~h3w32(1)n (p))}.0" hfPNfRF () ={s(p, hpyr(r) ! (P), hpwmery ? (B
hpnrery” () }forall p € Xppp,n € ZF, where (p, h.’PN.’R(T)l(p)' hTNR(T)Z(p)a-~"~hTN.7€(T)n(p))v

h]’NR(I)l (p), h]’NR(I)Z (0)s----hprrny (), h?NR(F)l (p), h?NR(F)Z (0),-....hpxgcm" (p) demonstrate the grades of
membership, indeterminacy and non membership values under the mapping hpyg .

Definition:3.2

Let (Xpn2, ®paz) be a Pythagorean Neutrosophic Refined Topological space. Let hpy¢: X — X be any
mapping. The Pythagorean Neutrosophic Refined Orbit set under the mapping hyp,-« is called Pythagorean
Neutrosophic Refined Orbit open set. Its complement is called a Pythagorean Neutrosophic Refined Orbit closed set
under the mapping Apy .

Example:3.3

Let Xpg, Yorr = {a0,C,d} . Let Tonpr = { Opprs Lok, Upr Vearr } Where Upyeg Ve - Xppr — [0,1] are
defined as :

Uppg(a) ={(0.1,0.1,0.1,0.1),(0.3,0.3,0.3,0.3),(0.9,0.9,0.9,0.9)}
Upng(b) ={(0.2,0.2,0.3,0.4),(0.2,0.3,0.4,0.4),(0.8,0.8,0.7,0.6)}
Upnz(c) ={(0.7,0.8,0.7,0.8),(0.5,0.5,0.5,0.5),(0.3,0.2,0.3,0.2)}
Upnz(d) = {(0.3,0.2,0.3,0.3),(0.1,0.1,0.1,0.1),(0.7,0.8,0.7,0.7)}
Vppa(a) = {(0.1,0.1,0.1,0.1),(0.5,0.5,0.5,0.5),(0.9,0.9,0.9,0.9)}
Vppa(b) ={(0.1,0.1,0.1,0.1),(0.5,0.5,0.5,0.5),(0.9,0.9,0.9,0.9)}
Venz(c) ={(0.1,0.1,0.1,0.1),(0.5,0.5,0.5,0.5),(0.9,0.9,0.9,0.9)}
Vena(d) = {(0.1,0.1,0.1,0.1),(0.5,0.5,0.5,0.5),(0.9,0.9,0.9,0.9)}

Define honz : Xpnr = Xpar 8 hppe(2) = a ,hppz(b) = b, hopx(C) = . The Pythagorean Neutrosophic Refined
Orbit set under the mapping hpy % is defined as

0" hppg(Upnz)={(t (Upxx, h?me(r)l Upnz), hparrer 2(Upng)s-. ~howry” (Upar)),

s(Upnz, h?meu)l (Upnz), h?]\fR(l)Z WUpnr)s- - hprry” Wenz)) s(Uppg, hTNR(F)l (Upnr), h?]\/R(F)Z (Upnr)s- -
..h;pNR(F)”(U?NR)) } = Vo Then Vo2 is a Pythagorean Neutrosophic Refined Orbit set under the mapping

hiPNIR'
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Remark:3.4

Every Pythagorean Neutrosophic Refined Orbit open set under the mapping hppyx : Xpnr = Xppaz IS
Pythagorean Neutrosophic Refined open set in Xp5-¢. But the converse is not true.Consider the above example, the
Upypx is a Pythagorean Neutrosophic Refined open set but its not a Pythagorean Neutrosophic Refined Orbit open
set under the mapping hppz-

In the following sessions consider X»j-2as a countable non empty set and hppx : Xpae = Xpae IS @ mapping to
obtain a fixed Pythagorean Neutrosophic Refined Orbit open set (hpax(p) = p) for any Pythagorean Neutrosophic
Refined Orbit open set p.

Theorem:3.5

Let (Xpx2, ®paz) be a Pythagorean Neutrosophic Refined Topological space with set and hpy -z : Xppp —
Xppg be any bijective mapping. Then hpp4(0) = p for any Pythagorean Neutrosophic Refined Orbit open set under
the mapping hpa .

Proof:

Let (Xpx2, ®paz) be a Pythagorean Neutrosophic Refined Topological space with set and hpyez @ Xppe —
Xppe be any bijective mapping. Then we have 3 cases:

Case 1:

If hpnr(w;) =wu;w; € Xpygsuchthati= jforallije N.Suppose Xpye ={uj,uz}and hpyy :

Let p be a Pythagorean Neutrosophic Refined Orbit open set under the mapping hp»-%.Then there exists a
Pythagorean Neutrosophic Refined set 9 € Yoy ?¥®such that , 0" hpyg (I9) =

{(t@, h?me(r)1 ), h?me(r)z @),....hpxzry" (), s(¥, hiPNR(I)l ®), hPNR(I)Z @),....hpyry" (9)),
s(®, h?]\m‘e.()r)1 ), h?NR(F)Z ®),....hpprry" ()} = p.

Y ={ (u1, ar, b1,¢1) ,(uz, az, b2,c2) }; Wy, uy € Xpyg, @y, by,€1,a2, by,C5 € Ypyrg,

h?N:Rl(ﬁ) ={ (u1,az, by,c3) , (Uz,a1,b1,¢1) }lhiPN:RZ(ﬁ) ={ (w, a1, b1,¢1) (uy, az, by,c3) }

O.h:p]\[ge('lg) = { ((ul, inf(al, az'al, ....... ), Sup(bl'bz‘bl‘ PP ), SUp(Cl, CoyCpyener ven en )), ((uz, Sup(al, azjal, ....... ),
inf(by by by ........), inf(cy, ¢z, €1, eonoen . N}

OIhfp]\[R(ﬁ) = { ((ul, min(al, Ay A1yeenn... ), maX(bl‘bz‘bL e ), maX(Cl, €2, C1y e vee vee )), ((uz,

maX(al,az Ayenennn ), min(bllbz‘bl‘ ), min(Cl,Cz,Cl, ......... ))}:p

Thus for each u; € Xpp4, We get

Unpypup=u; P W) if (hprr) ' () = 0

hpnz (P) (uj) = {(0,1,1) if (h:PN:R)_l(uj) =0

From the definition and hypothesis of hypj-z, We obtain hpy ¢ (0)(w) = p(w;). Hence hpyz(p) = (p).

Case 2:
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If hppr(w;) =1 w,u; € Xpygsuchthati=jforsomeije N. Suppose Xpyz = { s, uy,us} and hpyg
: Xpyr = Xpag 18 defined as hpye(U) = uy | hoyr(Uz) = Us, hpyg(Us) = uy. (i.€ hpye(u;) =y, i=j=1and
hpnr(w;) = w;,i#j, i,j € {2,3}).

Let p be a Pythagorean Neutrosophic Refined Orbit open set under the mapping hpyg - Then there exists a
Pythagorean Neutrosophic Refined set 9 € Ypy2*?®such that ,

0 hpy(0)={(t(®, h?]\mz(r)l ), hgwaz(r)z @),....hpxry" (), s, h?]\/.’R(I)l(ﬁ)' h?mea)z @),....hpprpy" (9))
S0, h?mz(p)l(ﬁ)' h?NR(F)Z(19)’~~-~-h?NR(F)n(19))} =p.

B ={(w, a1, by,¢1) (U2, az, by,¢3), (u3, as, bz,c3) }; uy, upug € Xpyg, ay, b1,¢1,a, by,¢2, a3, bs, 3 € Yy,

h?NRI(ﬁ) :{ (ullal'bllcl) ’ (u2!a3vb3!c3) ' (u3va2vb2!cz)}!hPNR2(19) = { (ul! al!bl!cl) l(uZI az,bz,Cz), (u3!
as, bs,c3) }

0"hppr (@) ={ ((ug, ay, by,c1) | (up,inf(ay, az as,....... ), sup(by b3 by, ... ....), SUP(Ca, €3, C2) v van e N, ((us,
inf(a3, a; as,....... ), Sup(b3,b2,b3‘ ver e ), SUp(C3, C2,C3, vev vununn )) }

OIhpNR(l?) = { ((ul, aq, blvcl) y (uz,min(az, asdy,....... ), maX(bzlbglsz PR ), maX(Cz, C3,C0) vev vunann )), ((u3,
m|n(a3, a, as,....... ), maX(b3yb2'b3‘ e ), maX(C3, C2,C3) ven vee ans )) }: P

Thus for each u; € Xpp-%, We get

Uhmm(ui)=uj p(w) if (thNgg)_l (uj) *0Q

hpnz (p) (uj) = {(0’1'1) if (hy]\me)_l (uj) =0

From the definition and hypothesis of hpyg, We obtain

_ (a;, by, ¢;) ifi=j
s ) ) = { i sup(h) sup(ed)  if 12
Hence hpy2(p) = (p)-
Case 3:

If hpy isa identity mapping. Then every Pythagorean Neutrosophic Refined Orbit open set under this
mapping results that, hpy2(0) = (p). For every Pythagorean Neutrosophic Refined set p € Ypy2*?¥®. Hence the
proof.

Theorem :3.6

Let (Xpxz, ®paz) be a Pythagorean Neutrosophic Refined Topological space with set and hpyez : Xppe —
Xppg be any constant mapping. Then hpp 5 (p) = p for any Pythagorean Neutrosophic Refined Orbit open set under
the mapping hp-.

Proof:

Let (X2, ®paz) be a Pythagorean Neutrosophic Refined Topological space and p be a Pythagorean
Neutrosophic Refined Orbit open set under the mapping hp»-<.Then from the definition, there exists a Pythagorean
Neutrosophic Refined set 9 = { (wy, ay, br.ci) ; Ux € Xpynand ay, by,c;,, € Yppg forall k € N, such that
0™ hoppr(9) = p. Since hypy % is constant mapping , this implies there exists a fixed element u;, € Xp)-¢such that
honr() = (w), forall u; € Xpp5 and i€ N
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From the definition 3.1 we get,

Unporp=u, ® @) if (hpyr) ™ () # @
h 9) () = PR W)=ug J yJ
pve (9) (@) { (0,1,1) otherwise

Thus

B (9) (1) = { (sup; (9(w)), infi(9(w)), infi(9(w))) if U = uy,

01,1) if u #
9 ={ (ug, ag, by,¢1) (up, G, by Cp)senn .. (Wi, G biesi) ¥;
hpar(@)={(1,(0,1,1)),(uz,(0,1,1)), (u3,(0,1, 1)), (w, ( sup; O(u;), inf; 9(w,), inf; 9(u; )},
hpar? @)= {(u,(0,1,1)),(uz,(0,1,1)),(u3,(0,1,1)),.......... (i, (sup; O(wy), inf, 9(w,), inf; 9(u; )},
hpar® )= {(u1,(0,1,1)),(1,(0,1,1)),(u3,(0,1,1)),........ (g, (sup; O(w,), inf; 9(w;), inf; 9(u; )}

thus we generalize by, 0®hpyz (9) = (9, 0®hpya’ (9), 0% Ay’ (9), 0®hoyz" (9)) where

0% hpyz' O)={t, hpwrr' ) hpwrey” s hopwrery" ()10 honz' (9) =

{8, hpwray' (9), hpwray> (@)-.... hpar(y (9) 10" hapyr” ) =5 (0, hpwrcry' ), hppgiey” (@)
h?NR(F)n )}

0" hppp(9)={(u1,(0,1,1)),(uz (0,1,1)),(us,(0,1,1)),............ (ug, (min(ay, sup; 9(u; ),max(by, inf; 9(u; ),
max(cy, inf; 9(u; )},

(e, (0,1,1)) ifi # k

O"h 9) =
Pz () {(ukl(min(ak,supi I(u; ), max(by, inf; 9(u; ), maX(ck, inf; 9(u; )) ifi=k

=p
From the definition of hpy ¢, thus we get hpy2(p) = (p).

Remark:3.7

The condition hpp5 : Xpae = Xparg IS bijective or constant is necessary condition to obtain fixed
Pythagorean Neutrosophic Refined Orbit open sets for any Pythagorean Neutrosophic Refined Orbit open set p
under the mapping hpy .

Example:3.8

Let Xppz = { Uy Uz,Us, uy } and Gpor) = {0pxz, Loz, 03 Where p € Yppr**V® and defined as,p = {
(u1,(0.1,0.3,0.9)),(u,, (0.1,0.3,0.9)),(u5,(0.2,0.6,0.8)),(u14,(0.2,0.6,0.8)) }.Let hpyg : Xprr = Xpar be a mapping
defined as hppg(Uq) = Uz, hppr(Uy) = U, hpnr(Us) = Uy hppe(Us) = Us.hppk IS NOt & bijective mapping. Let
9 € Ypp % be difined as, 9 = {(u4,(0.5,0.1,0.5)),(uy, (0.1,0.3,0.9)),(u3,(0.8,0.2,0.2)),(u4,(0.2,0.6,0.8))}.

0"hpng (9) = (9, O™hpyz' (9), 0%hpyz' (9),0"hpyz" (9)) where
0"hpyr' (9)={t (0, h:PN:R(T)1 ), hﬂDN:R(T)2 ®)s....hprry" (9))},0" hoyz' (9) =
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{s@, h?]\mz(l)1 ), hT]V‘R(I)Z ®),... -~h7>]\r7e(1)n (¥))}.0" hmmep ) ={s (9, hfPJ\/fR(F)1 ), hfPNfR(F) 2 ),.....
h.”PN.”R(F)n )}

0™ hpp(9)={(u1.(0.1,0.5,0.1,...),5(0.3,0.1,0.3,...).5(0.9,0.5,0.9,.....)),(u5,£(0.5,0.1,0.5,....),5(0.1,0.3,0.1,...),5(0.5,0.
9,0.5,...)),(u3,1(0.2,0.8,0.2,....)s(0.6,0.2,0.6,...),5(0.8,0.2,0.8,...)),(14,t(0.8,0.2,0.8,....),5(0.2,0.6,0.2,....),5(0.2,0.8.0.
2,...)

0™ hpne () = {(11,(0.1,0.3,0.9)), (15, (0.1,0.3,0.9)),(123,(0.2,0.6,0.8)),(14,(0.2,0.6,0.8))} = p.

Thus we Proved the Pythagorean Neutrosophic Refined open set p is Pythagorean Neutrosophic Refined Orbit open
set p under the mapping hpy».But hpyr(p) # (p).

Result:3.9

Let (Xpx2, ®paz) be a Pythagorean Neutrosophic Refined Topological space with set and hpy -z : Xppp —
Xpyre be either constant or bijective mapping and p is a Pythagorean Neutrosophic Refined Orbit open set under
hpwz, then hpyz(p) = (p).

Theorem:3.10

Let (Xpx2, ®paz) be a Pythagorean Neutrosophic Refined Topological space with set and hpyez @ Xppe —
Xpe be any mapping . If p is Pythagorean Neutrosophic Refined Orbit open set then,0® hpp % (p) = p.

Proof:
From the dentition3.1 and the result 3.9the proof is obvious.
Theorem :3.11

Let (X2, ®paz) be a Pythagorean Neutrosophic Refined Topological space with set and hpyeg : Xppe =
Xppg be any mapping. If p;, p, are Pythagorean Neutrosophic Refined Orbit open sets under the mapping hpp -z,
then O® hpyr(pr N p2) = 0%hpyz(p1) N O hppz(p2)

Proof:
We have 3 cases to prove the theorem,
Casel:

Suppose hpy - is a bijective mapping and If hpye(u;) = w;; u;,w; € Xpygsuchthati = jforallije N.

Let p; and p, are Pythagorean Neutrosophic Refined Orbit open sets under the mapping hp-%. Then 39;,9, € Yppur
defined as 9; = {(v;, a;, b;,c;))}, 9, = {(w;, d;, e;,f;)}, where u; € Xpp and a;, b;,c;,d;, e;,fi € Ypp-e SUch that
0®hpyz(p1) = prand 0% hppr(p2) = p2

From the theorem3.5 ,casel, we have

0" hppr(91) = { ((u;, (inf(a;),sup(b;),sup(c;)), i € N}= p1;0™hppr (9,)={((u;,(inf(d;),sup(e;),sup(f;)), i € N}=
P2

p1 N py ={u;, min (a;,d;), max (b;, e;), max (c;, f;),i € N}
p1 N p={u;, I mn} where | = min (a;,d;), m = max (b;, e;), n=(c;, f;)-

Thus we genaralise, for all u; € Xppz,
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Unpyrup=u; P1 N p2(W)  if (hpyr) "t () = @

hoxg (o1 N p2) () = {((),1,1) if (h:pJ\me)_l(uj) =0

= (I,m,n)

Hence hpyg (p1 N ;) = p1 N p, Which implies ,hpy” (01 N p2) = Az’ (o1 N p2) = py N pz.Then from the
definition and theorem O™ hpp2 (01 N P2) =p1 N P2 = O®hpnr(p1) N O™ hppyr(02)

Case 2:

Suppose hpy - is a bijective mapping and If hpye(u;) =w;; u;u; € Xpyg such thati = jforallije N.
Let p; and p, are Pythagorean Neutrosophic Refined Orbit open sets under the mapping hpy-¢. Then 39,,9, €
Ypng defined as 9; = {(u;, a;, b;,c;)}, 9, = {(w;, d;, e;,f;)}, where u; € Xpp5 and a;, b;,c;,d;, €;,f; € Yppg Such that
0®hpyx(p1) = prand 0% hpyz(p2) = p2

From the theorem3.5 ,case2, we have

0" hppr (1) = {(w;, (inf(a;),sup(b;),sup(c;))), i € N,;(i.e hpyg (u;) = u;, i=j=1 and hppz(u;) = u; i#j,
ivj € {2'3' } )}: b1

0" happrr (92)={(u;,(inf(d;),sup(e;),sup(f))). 1 € Ni(i.e hpyr(u;) = v, i=j=1 and hppr(u;) = ;,i#],
iJ€1{23,..0}=p,

u;, (min(a;, d;), max(b;, e), max(c, £)));  if howr(w) = w,i=}j,

Thenp, N p, = {(
(u;, (min(a, d) , max(b, e), max(c, f))); if hppr(W) = uj,i # j

Unpypup=u; o1 0 p2(W)  if (hpar) "t () = @

hpyz (p1 N p2) (W) = {(0,1,1) if (hpyr) '(u) = @

Hence hpy (p1 N pz) = p1 N py, Which implies hpy”(p1 N p2) = hpaz™ (01 N p2) = p1 N p;.Then from the
definition 3.1 and theorem3.50™ hp 2 (01 N p2) =p1 N py = O™ hppr(p1) N O™ hppr(p2).
Case 3:

If hppr is constant mapping, let p; and p, are Pythagorean Neutrosophic Refined Orbit open sets under
the mapplng hfP]\ffR' Then 3191,192 € YfP]V'fR defined as 191 = {(ui, a;, bi,Ci)}, 192 = {(ui, di' ei,fi)}, where U; € X;DNR
and a;, b;c;,d;, €;.f;,€ Ypyg such that 0% hppz(p1) = prand O®hpyz(p2) = p2,

From the theorem 3.5 we have,

(ui' (01111)) lfl *k

O"h Y1) =
Pae (1) {(uk,(min(ak,supiﬁl(ui ), max(by, inf;9; (w; ), max(cy, inf9; (; ))) ifi=k

=p1

(ui' (0,1,1)) lfl *k

0%hparn(92) = {(uk,(min(dk,supiﬁz (w; ), max(ey, infi¥, (u; ), max(fy, infid,(w;)))  ifi=k

= P2

1575
Eur. Chem. Bull. 2023,12(12), 1568-1580



PYTHAGOREAN NEUTROSOPHIC REFINED SETS ON DYNAMICAL SYSTEMS
Section A-Research paper

(u,(0,1,1)) ifi £k
p1 N p2=y (i, (min((ay, sup;9y (w; ), (di, sup;9, (u; ), max((by, infid1 (w;)), (ey, infiv, (w; ),
max(cy, infid (w; ) (i, infid,(w;)))  ifi =k

hpxzr(p1 N p2)=py N pZ;hSPNRZ(pl N p)=p N pZ;hZPN.’R3(p1 N P2)=p1 N Pyyenen...
From the definition 3.1 and theorem3.5 we get ,0®hppr(p1 N p2) =p1 N P2 = O™ hpre(p1) N O™ hprz(02).
Theorem:3.12

Let (Xpx2, ®pa-z) be a Pythagorean Neutrosophic Refined Topological space with set and hpy -z : Xppp —
Xpe be any mapping . If {ps}, 6 € Apy¢ is any family of Pythagorean Neutrosophic Refined Orbit open set under
hpz then,0® hpyg(Us{ps}) =Us O® hppr ({ps))-

Proof :
Case 1:

Suppose hpyx is a bijective mapping and If hpye(u;) =w; u;,w; € Xpygsuchthati = jforallije N.

Let {ps}, & € Apy¢ is any family of Pythagorean Neutrosophic Refined Orbit open sets under the mapping hpp-z.
Then 395 € Yprn PR, § € Apygdefined as 95 = {(u;, ;s bis.ci;)}, where u; € Xpyp and agg, big,ci; € Yoz
such that O™ hp 2 (95) =95, 6 € Apya

From theorem 3.5,case 1 we get,

0" hpyz(0s) = { ((w;, (Is;ms,n5)), 8 € Apyz}= ps, where Is = (inf(a;;), ms = sup(b;,), ns = sup(c;;). Thus
(Us{ps}) ={ ((w;, (sup(a;y),inf(b;,),inf(c;)), i € N, 8 € Appz}=ps,

Uh])]\/]g(ui)=uj (Uh})]\/p(ui)=uj{p5}) (u‘l) lf (hTNR)_l (uj) * @
(0,1,1) if (hpnr) ' () = @

hpxzr (Usios}) () = {
= (lsms,ns) = Us{ps}

Thus hpyz (Us{ps}) = Us{ps} , which implies hpyz” (Us{ps}) = Us{ps} henz® (Us{ps)) = Us{ps)o----

From the definition 3.1 and theorem 3.5we get,

0" hpyr(Us{ps}) =Us{ps} = Us O hppr({ps})

Case 2:

Suppose hpyx is a bijective mapping and If hppe(u;) = w;; u;,w; € Xpygsuchthati=jforallije N.Let
{ps}, 6 € Appx isany family of Pythagorean Neutrosophic Refined Orbit open sets under the mapping hpp .
Then 395 € Yppr PR, 8 € Apyrr defined as 95 = {(u;, a5, bigcig )}, where u; € Xpyp and a;g, big.cis € Yong
such that O™ hpy-x(95) =95, 6 € Appra

From the theorem3.5 ,case2, we have

0" hpyz(05) = {(w;, (inf(a;,),sup(b;,;),sup(ci;))), i € N,i(i. hpyr(w) = w, i=j=1 and hpye(u;) = ;,i#],
ije{23,..1)}

(Uh?me(ui)=uj{p5})(ui) if (hiP]V'IR)_l(uj) 0

hpxz (Usios}) () = {(0’1’1) if (hpwz)'(w) =0
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Hence hpy (Us{ps}) = Us{ps}, which implies hpyz®(Us{ps}) = hewz’ (Us{ps}) = Us{ps}-Then from the
definition 3.1 and theorem 3.5 we get, O™ hpx2(Us{ps}) =Us{ps} = Us O™ hpre({ps})

Case 3:

Suppose hpy - is a constant mapping and If hpye(u;) = u;; u;,u; € Xpygsuchthati=jforallije N.
Let {ps}, 8 € Apyr is any family of Pythagorean Neutrosophic Refined Orbit open sets under the mapping hp .
Then 395 € Yoy n ?V?,§ € Apyrx defined as 95 = {(u;, a;,, big,cig )}, where w; € Xpyep and a;, by ,ci5 € Yoyg

ls?
such that OIh:pN:R(ﬁé‘) = 195, 0§ € ATNR
From the theorem (2) we have,

(u;,(0,1,1)) ifi+k

0" hppz(Ds) :{ ) ) , o
PNRLES (i, (min(a;, sup;9s (w; ), max (b, inf;9s (w; ), max(cis,mfiﬁg(ui))) ifi=k

(u;, (0,1,1)) ifi+k
Thus,Us{ps} = (uk,(miniEﬁ‘min(ai(S, sup; 95 (u; )), maxi?é'max(bis, inf;95(u;)),
maxifmax(c;,, infi9s(;))))  ifi=k

Clearly, Us{ps} is a point in Xpyz.Hencehpyz (Us{ps}) = Us{ps}, which implies hpyz®(Us{ps}) =
h?NR3(U5{p5}) = Us{ps}-Then from the definition and theorem we get, O™ hpp = (Us{ps}) =Usips} =
Us 0% hpnz ({ps])-

4.Pythagorean Neutrosophic Refined Orbit Topological space
Theorem:4.1

Let (Xpag, ®ppaw) be a Pythagorean Neutrosophic Refined Topological space. Let hppyg: Xpar = Xpnr
be a mapping. Let G5, denote the family of all PR Orbit open sets under the mapping hpyz . Then Gpy g, is a
PNR Topology on Xpp5 coaser than Gy .

Proof:

i)We know that 055 and 1p,-¢ are PN'R Orbit open sets under the mapping hpyg because 3p = Oppz
and 9 = 173]\[]3 such that OIhPNfR(p) = OfP]V'fR € GPNR and O.hp]v'gg(ﬁ) = 17’]\/'73 S (57’]\/‘72' Thus OSDNR €

Gpyr,and 1pyzr € Opyg,

ii)Letuy, u, are Pythagorean Neutrosophic Refined Orbit open sets under the mapping hpyg , TO Prove
u; N uy is also a Pythagorean Neutrosophic Refined Orbit open set under the mapping hpyy , have to find a
PNR set 9 € Yppp % such that, 0" hpyz(¥) = u; N Uy € Gpyp.

By choosing 9 =u; N u, from the theorem and also from the preposition we get,0® hpp (9) =
0" hoppr(uyr N uy) = 0®hppr () N O hpye(Uy) = uy N uy. Since every PN'R Orbit open set is PR open set

iii) Let {ps}, & € Apy¢ is any family of Pythagorean Neutrosophic Refined Orbit open set under hpy-¢, Let
¥ = (Us{ps}) . then from the theorem O® hpyg (9) = O®hpyr (Us{ps}) = Us 0% hpnr ({ps}) = (Us{ps}) € Gppx -
Thus {ps},6 € Apyz€ Gpyz,

Thus we proved Gy -z, is a2 PNR Topology on Xpy5 coaser than Gpy 5

Definition:4.2
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Let (Xpnz, ®paz) be a Pythagorean Neutrosophic Refined Topological space. Let hppyz: Xpnz = Xonz
be a mapping . Then (Xpyz, ®pz,) is called Pythagorean Neutrosophic Refined Orbit Topological space
associated with (X5, ®pa2) When it satisfies the following axioms;

1) Opyg € Oppg,and 1pyzr € Gpyg,
2) Q1N Q; € Bpyg,, forany Q1,Q; € Gpyz,
3) U{Qs} € Gpyg,, Where {Qs} , § € Apyrgbe any arbitrary family PNV'R orbit open sets

Example:4.3

1) Let Xppxbe any non empty countable set , then Gpjpz, = ( 0pprz, 1px) is a PN'R orbit topology on

XSPNR-

2)  Let Xpjzbe any non empty countable set , if hpyz: Xpyr = Xpaz is the identity mapping, then Gpy ez, =
(57’N7€
Definition:4.4

Let (Xpnr Opacr, ) i called Pythagorean Neutrosophic Refined Orbit Topological space and 9 €
Yo PR, Then PR orbit closure of 9,C1*(¥9) is the intersection of all PR orbit closed supersets under the
mapping hpyz, CI*(9) = N{o € Yppr ® [0 2 9, 1pyp -0 € Gpnz, }-CLl (I) is the smallest PR orbit closed
set which contains 9 under the mapping hpy .

Definition:4.5

Let (Xpaz, Oparz, ) is called Pythagorean Neutrosophic Refined Orbit Topological space and ¢ €
Ypprr *PVR. Then PN'R orbit interior of 9,7n¢*(¥) is the union of all PR orbit open subsets under the mapping
hppg, Int*(9) = U{o € Yoy ™™ R g S 0, 0 € Gpnz, }-Int™(9) is the largest PR orbit open set which
contained in ¥ under the mapping hpy .

Theorem:4.6

Let (Xpnr Oparr, ) Is called Pythagorean Neutrosophic Refined Orbit Topological space and 9,0 €
Yoz "P¥® Then Int*(9) € intpyr (9) € 9 S Clpyg (9) S CI* ()

Proof:

It is obvious, because every PNVR orbit closed set is PNV'R closed under the mapping hpy-« , Similarly
every PN'R orbit open set is PR open under the mapping hpy .

Theorem:4.7

Let (Xpnr Opar,) Is called Pythagorean Neutrosophic Refined Orbit Topological space and 9,0 €

Yo ¥R Then

1) Int” (0pnz) = Opyz and Int™(1pyz) = lovs

2) Int*(9)c?

3) Int"WUo)=Int*(9)VUInt*(a)

4) If9 caothenint™(9) < Int* (o)

5 Int*(Int*(9))=Int*(I)

6) IfYisaPNR orbitopensetifandonlyifd = Int*(9 ) under the mapping hppx
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Theorem:4.8

Let (Xpnr, Opacr, ) is called Pythagorean Neutrosophic Refined Orbit Topological space and 9,0 €

Yppr PR Then

1) ClU'(Opwr) = 0ppz and CU'(1pnz) = Loz

2) dcel'®@)

3) Cl'@uao)=Ccl*@)ucl* (o)

4) IfY € othenCl*(¥) < Cl* (o)

5 crrer)=clr@)

6) If9isaPNR orbit closed set if and only if 9 = CI*(9 ) under the mapping hpy -z

Theorem:4.9

Let (Xpnr Opar, ) I called Pythagorean Neutrosophic Refined Orbit Topological space and 9 €

Yppr P2 Then,

1) lpyp—Int* (@) =Cl'(lppzr —9)
2) lpyg —CU'(¥) =Int*(Lpyg — V)

Proof:

From Proposition(2) , we know that nt*(9) € 9, taking complement on both sides,1p5r — 9 S
lpye — Int™(9). Thus 1pye — Int™ () is PNR orbit closed set and by Proposition (4)Cl* (1ppr —9) S
Cl'(lpyg —INnt*(9)) = 1ppg — Int™(9).Thus we proved 1ppe —Int (9 ) = Cl"(1ppe — 9 ).Conversely , by
proposition(2) we have (1pyg —9) € Cl*(1ppr — 9 ), taking complement 1552 — CU*(1ppe — 9 ) € 9 .Thus
Cl'(1ppe — V) is PNR orbit closed set. Then 1oz — Cl*(1ppr — ) is PN'R orbit open set. From
proposition(6), we get 1pye — CU"(1ppe — 9 ) € Int™ (V)

Conclusion:

This led to the development of Pythagorean Neutrosophic Refined Orbit Topological Space and the
evaluation of certain fundamental theorems and properties. Additionally, the prerequisites for determining the orbit
of the PNR sets have been established.

Abbreviations: PNR — Pythagorean Neutrosophic Refined
PNRT - Pythagorean Neutrosophic Refined Topology
Int — interior
Cl - Closure
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