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Abstract
Let G = (V,E) be a simple graph and u, v be any two vertices of G. Then the circular
distance between u and v denoted by D¢(u, v) and is defined by

DC(u’ v) — {D(u, U) -(i; d(ul 17) :ff:Z i ;7

where D(u,v) and d(u, v) are detour distance and distance between u and v respectively. Let
W = {wy, wy,...,wi} € V(G) and v € V (G). The representation cr(v/W) of v with respect
to W is the k-tuple (Dc(v, w;),D¢(v, wy),...,D¢(v, wk)).Then W is called a circular resolving
set if different vertices of G have different representations with respect to W. A circular resolving
set W is called connected circular resolving set, G[W] is connected . The minimum cardinality of
a connected circular resolving set in a graph G is its connected circular metric dimension of G and
is denoted by cdim.(G). The connected circular metric dimension of some standard graphs are
determined. Some general properties satisfies by this concept are studied. Connected graphs of
order n > 3 with connected circular metric dimension 1 are characterized. Necessary condition for
the connected circular metric dimension to be n — 1 is given.

Keywords: distance, detour distance, circular distance, circular resolving set, connected circular
metric dimension.
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1. Introduction and Preliminaries

Let G be a simple graph with vertex set V(G) and edge set E(G). The order of a graph G is
|V (G)], its number of vertices denoted by n. The size of a graph G is |E(G)|, its number of
edges denoted by m. For basic graph theory terminology, we refer [3]. The degree, deg(v) of a
vertex v € V(@) is the number of edges incident to v. We denote A(G) the maximum degree
of a graph G. The distance d(u, v) between two vertices u, v € V(G) is the length of a shortest
path between them. These concepts were studied in [1,2,5,10-14,17-24,26,27]. The detour
distance D(u,v) between two vertices u,v € V(G) is the length of a longest path between
them. These concepts were studied in [6-8,15]. Let W = {w;, w,,...,wy} € V (G) and
v € V (G). The representation r(v/W) of v with respect to W is the k-tuple
(d(v, wy),d(v, wy),...,d(v, wk)).Then W is called a resolving set if different vertices of G
have different representations with respect to W. A resolving set of minimum number of
elements is called a basis for G and the cardinality of the basis is known as the metric
dimension of G, represented by dim(G). These concepts were studied in [4,28]. The
representation  Dr(v/W) of v  with respect to W is the k-tuple
(D (v,wy),D(v, wy),...,D(v, wk)).Then W is called a detour resolving set if different vertices
of G have different representations with respect to W. A detour resolving set of minimum
number of elements is called a detour basis for G and the cardinality of the basis is known as
the detour metric dimension of G, represented by Ddim(G).

The circular distance between u and v is denoted by D¢(u, v) and is defined by

Dc(u, v) — {D(ui U) —(l)_ d(ui U) llff:Z :'=t :j

An u — v path of length D¢(u,v) is called a u — v circular. The circular diameter is the
maximum circular distance be a pair of vertices of G. It is denoted by the D¢(G). A circular
path of length D€(G) is called the circular diametral path. These concepts were studied in [16].

Let W = {wy, w,,...,w} € V(G) and v € V (G). The representation cr(v/W) of v
with respect to W is the k-tuple (Dc(v, w;), D¢ (v, wy),...,D¢(v, Wk)).Then W is called a
circular resolving set if different vertices of G have different representations with respect to
W. A circular resolving set of minimum number of elements is called a circular basis for G and
the cardinality of the basis is known as the circular metric dimension of G, represented by

cdim(G). These concepts were studied in [25]. In this article, we study a new metric dimension
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called the connected circular metric dimension of a graph.The following theorem is used in the
sequel.
Theorem 1.3. [28]] For the complete graph ¢ = K, (n = 2),cdim(G) = n— 1.

2. The connected circular metric dimension of a graph

Definition 2.1. A circular resolving set W is called a connected circular resolving set of G if
G[W1] is connected. The minimum cardinality of a connected circular resolving set in a graph G

is its connected circular metric dimension of G and is denoted by cdim.(G).

Example 2.2. For the graph G given in Figure 2.1, let W= {v;,v,}. Then cr(v,/W) = (0,4),
cr(vy, /W) = (4,0), cr(vs/W) = (3,4), cr(vy/W) = (4,5). Since cr(v/W) are distinct for all
v € V(C,), it follows that W is a circular resolving set of G. Since G[W] is connected, W is a
connected circular resolving set of G and so cdim.(G) < 2. Also since no singleton subset of

V(G) is a circular resolving set of G, we have cdim.(G) = 2.

V1 VU,

2
G
Figure 2.1

Example 2.3. For the graph G given in Figure 2.2, no singleton subset of V(G) is a circular
resolving set of G, we have cdim.(G) = 2. Let W = {v;,v3}. Then cr(v,/W) = (0,4), cr(v,/
W) =(2,2), cr(vs/W) = (4,0), cr(vy,/W) = (4,4). Since cr(v/W) are distinct for all v e
V(C,), it follows that W is a circular resolving set of G. Since G[W] is not connected, W is not a
connected circular resolving set of G. It is easily verified that no two-element subset of V(G) is
not a circular resolving set of G and so cdim.(G) = 3. Let W; = {v;,v,,v3}. Then W; is a

connected circular resolving set of G so that cdim.(G) = 3.

1734
Eur. Chem. Bull. 2023, 12(Special Issue 7), 1732-1744



The connected circular metric dimension of a graph

Section A-Research paper

U3

%1

G Va
Figure 2.2

Observation 2.4. (i) Let G be a connected graph of order n > 2. Then 1 < cdim.(G) <n —1.

(i) Each cut vertex of G belongs to every connected resolving set of G.

In the following we determine the connected circular metric dimension of some standard

graphs.
Theorem 2.5. For the graph G = B, (n = 2), cdim.(G) = 1.

Proof. Let V(B,) = {vy, vy, ..., v} and let W = {v;}. Then D¢(vy,v;) =2(—1),(1 <i <
n). Since cr(v/W) is distinct for all v € V(B,), it follows that W is a circular resolving set of
G. Also, G[W] is connected, Hence W is a connected circular resolving set of G so that
cdim (G) = 1.

Theorem 2.6. Forthecycle G = C,,n = 3, cdim.(G) =n— 1.

Proof. Let V(G) = {vy,v,, ..., v} and let W = {v,,v,, ...,v,_1}, The circular representations
of (n — 1) tuples are as follows
cr(vy /W) =(0,n,n,...,n),
cr(v,/ W) = (n,0,n,n,...,n)
cr(vg/W) = (n,n,0,n,n,..,n)

cr(Vp_1 /W) = (n,n,n,...,n,0)

cr(v, /W) = (n,n,n,n, ..., n).
Since cr(v/W) are distinct for all v € V(C,,), it follows that W is a circular resolving set of G.
Since G[W] is connected, W is a connected circular resolving set of G. Therefore cdim.(G) <

n —1. We substantiate that cdim.(G) = n — 1.Consider, however, that cdim.(G) <n — 2.
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Then, a set S'exists such that |S'| <n — 2. As a result, there are at least two vertices u, v that
satisfy the contradiction cr(u/S') = cr(v/S') = (n,n, ..., n).Consequently, cdim.(G) =n — 1.
Theorem 2.7. For the complete graph ¢ = K,,, n = 2, cdim.(G) =n — 1.
Proof. The proof is similar to the Theorem 2.6.
Theorem 2.8. For the wheel graph ¢ = W,, n = 3, c¢dim.(G) =n — 4.
Proof. Let V(G) = {vy, vy, ...,vp_q,u}  and W = {vy,v,,...,v,_4}, Then the circular
representations of (n — 4) tuples are as follows
cr(vy/W)=(0,n,n+1,..,n+1,n+1)
cr(vy/W)=m,0,nn+1,..,n+1,n+1)
cr(vs;/W)=m+1,n0nn+1,...,n+1)

cr(Wp_s/W)=n+1,n+1,n+1,..,n0)
cr(vp_s/W)=m+1n+1n+1,..,n+1,n)
cr(Wn_,/W)y=(n+1,n+1,n+1,..,n+1,n+1)
cr(p /W)y=(n,n+1,n+1,..,n+1,n+1)
cr(u/W) = (n,n,n,n,...,n,n).
Since cr(v/W) are distinct for all v € V(I#},), it follows that W is a circular resolving set of G.
Since G[W] is connected, W is a connected circular resolving set of G. Therefore cdim.(G) <
n — 4. We substantiate that cdim.(G) = n — 4. Consider, however, that cdim.(G) < n — 5.
Then, a set W'exists such that |W'| < n — 5. As a result, there are at least two vertices u, v that
satisfy the contradiction
cru/S) =cr(/S)=Mm+1L,n+1,..,n+1).
Consequently, cdim.(G) = n — 4.
Theorem 2.9. For the complete bipartite graph ¢ = K., (1 <7 < s),

Lr=11<s<2,
cdim.(G) =ir+s—2; r=1,s =2 3.
r+s—1;2<r<s

Proof. Let X = {x;, x5, ..., x,-} and Y = {y;,y,, ..., ¥s} be the two bipartite sets of G. We have the
three cases.

Case (i):;r = 1,1 < s < 2. The result follows from Theorem 2.5.

Case (ii)):r=1,s = 3.
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Let W =V(G) — {x4, ys}. Then the circular metric representations (n — 2) tuples are as follows:
cr(x /W) =(2,2,2,...,2,2)
cr(y, /W) = (04,4, ...,44)
cr(y, /W) = (4,04, ...,4,4)

cr(Ys_1 /W) = (4,44, ...,4,0)
cr(ys /W) = (444, ...,44).
Since the representation are distinct and G/W] is connected, W is a connected circular resolving
setof G sothat cdim.(G) <r + s — 2. We demonstrate that cdim.(G) = r + s — 2. On the
other hand, imagine that cdim.(G) < r + s — 3. Then there exists a circular resolving set
W'such that. [W'| < r + s — 3. Asaresult, there are at least two end vertices u, v € V\W'such
that cr(u/W') = cr(v/W') = (4,44, ...,4,4), which is incoherent. As a result, cdim.(G) =r +
s—2.
Cases (iii): 2 <r <s.
Let W =V(G) — {y}. Then the circular metric representations (r + s — 1) tuples are as follows:
cr(g/W)=0,r+s—-1r+s—-1,...,r+s—1)
cr(,/W)=0+s—-10,r+s—1,..,r+s—1)

cr(x, /W)y=(r+s—-1,r+s—-1,..0r+s—-1,..,r+s—1)
— rthplace
cy/W)=r+s—-1,r+s—1,..,r+s—-10r+s—-1...,r+s—1)
—> (r+ 1)thplace
cr(y,/W)=(r+s—-1,r+s—-1,..,r+s—-10, r+s—-1 ..,r+s—1)
\—> (r + 2)th place

(Y /W)=@r+s-1,r+s—-1L,r+s—-1,..,r+s—1,r+s—-1,..,0)

l
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(r + s — 1)t place
cr(y /W)=r+s—-1r+s—-1r+s—-1,.,r+s—1,r+s—-1,..,r+s—1).
Since the representation are distinct and G/W] is connected, W is a connected circular resolving
set of G so that cdim.(G) <r+s—1. We demonstrate that cdim.(G) =r+s—1.
Consider however, that cdim.(G) < r + s — 2. If so, a circular resolving set W’ exists such
that |W'| <r+s—2 As a result, there are at least two vertices, u,v € V\W'such that
cru/wWy=crv/W)=@r+s—-1r+s—-1,r+s—1,..,vr+s— 1), which is incoherent.
As aresult, cdim.(G) =r+s—1.
Theorem 2.10. Let G be the graph obtained from K, ,,_;, (n = 3), by subdividing the end edges
exactly once. Then cdim.(G) =n — 1.

Proof. Let x be the central vertex of K; ,,_4 (n = 4) and {vy, v, ..., v,_1} be the set of end
vertices of G. G is the graph obtained form K, ,,_;, (n = 4), by subdividing xv; (1 <i<n—
Dbyu, (1 <i<n-—1).LetW = {x,uy,uy, ..., up_}. Then

cr(x/W) =(0,2,2,...,2,2)
cr(u /W) = (2,044, ...,44)
cr(uy /W) = (2,404, ...,44)

cr(Uy_s/W) = (2,4,4,4, ...,0,4,4)
cr(,_p /W) = (2,4,4,4, ... 4,4,0)
cr(Up_1 /W) = (244, ...,44,4)
cr(vy /W) = (4,2,6,6,6, ... ,6,6)
cr(vy /W) = (4,6,2,6,6, ...,6,6)

cr(vn_3/W) = (4,6,6, ...,2,6)
cr(Vp—, /W) = (4,6,6,6, ...,6,2)
cr(Vp_1/W) = (4,6,6,6, ...,6,6,).
Due to the distinctness of the representations, W is a circular resolving set of G. Also G[W] is
connected, W is a connected circular resolving set of G so that cdim.(G) < n—1. We
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substantiate that cdim.(G) = n — 1. Consider, however, that cdim.(G) < n — 2. If so, a circular
resolving set W' exists such that |[W'|<n-2 and G[W'] is disconnected.
Consequently, cdim.(G) = n — 1.
Theorem 2.11. Let G be the graph obtained from C,, (n = 3), by subdividing the edges exactly
once. Then cdim,.(G) = 2n — 1.
Proof: Let V(C,) = {vy, vy, ..., vy} and {uy, u,, ..., u,} be the subdivided vertices of C,,. Then G is
a cycle contains 2n vertices. By Theorem 2.6, cdim.(G) = 2n — 1.
Theorem2.12. For the crown graph G = H,, ,, n = 3, cdim.(G) = n.
Proof. Let V(G) = {uy, uy, ..., Uy, V1, Vg, ..., U} and E(G) = {(ui,vj); 1<i,j<ni ij},
Let W = {uy, us, uy, ..., Uy,, v, }. Then the circular representations of n tuples are as follows
cr(uy /W) =(0,n,n,n,..,nnmn,n)
cr(u, /W) = (n,n,n,n,..,n,n,n,n+ 2)
cr(ug/W) =(n,0,n,n,..,n,nnn)

cr(uy /W) = (n,n,0,n,..,n,nnn)

cr(Up_1 /W) = (n,n,n,n,..,n0mnn)
cr(u, /W) = (n,n,n,n,..,n,n,0,n)
cr(vy/W)=m+2,n,n,n,..,nnnn)
cr(vy, /W) = (n,n,n,n,..,n,nn,0)
cr(vs /W) =(m,n+2,n,n,..,n,n,n,n)

cr(uy /W) = (n,n,n+ 2,n,..,n,n,n,n)

cr(Vp_1 /W) =mMmnnn,..,nn+2,nn)

cr(vy, /W) =n,nnn,..,nnn+2,n)

Since cr(v/W) are distinct for all v € V(Hn,n), it follows that W is a circular resolving set of G.
Since G[W]is connected, W is a connected circular resolving set of G. Therefore cdim.(G) < n.

We substantiate that cdim.(G) = n. Consider, however, that cdim,.(G) < n — 1. Then, a set
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W'exists such that |W'| < n — 1. Asaresult, there are at least two vertices u, v that satisfy the
contradiction
cr(u/S") =cr(v/S") = (n,m,n,n, ..., n,n).

Consequently, cdim.(G) = n.

3.Some results on connected circular metric dimension of a graph
Theorem 3.1. For connected graph of order n = 2, 1 < cdim(G) < cdim.(G) <n—1.

Proof: Any circular resolving set of G needs atleast one vertex and so cdim(G) = 1. Since any
connected circular resolving set is also a circular resolving set of G, we have cdim(G) <
cdim.(G). Also since V(G) — x is a connected resolving set of G, where x € V(G) is not a cut

vertex of G, we have cdim,.(G) <n— 1. Thus 1 < cdim(G) < cdim.(G) <n —1.

Remark 3.2. The bounding bound in Theorem 3.1 bounds are sharp.

For G = P,,n = 2, by theorem 2.5 cdim.(G) = 1.

For the cycle G = C,, by theorem 2.6 cdim.(G) = 3 and for G = K,,, n = 3, cdim.(G) =n — 1.

Remark 3.3. Also, the bounds in Theorem 3.1 can be strict. For the star G = K 4, cdim(G) = 3
cdim.(G) =4 andn = 5. Thus 1 < cdim(G) < cdim.(G) <n — 1.

Theorem 3.4. Let G be a connected graph of order n > 3 has connected circular metric

dimension 1 if and only if G = B,.

Proof. Let G = B,. Then the result follows from Theorem 2.5. Conversely, assume that
cdim.(G) = 1. Let W = {v} be a minimum connected circular resolving set of G. Then cr(u/
W) = D¢(u,v) is a non-negative integer less than 2(n — 1) for each u € V(G). There exists a
vertex u € V(G) such that d(u,v) =n — 1. This is because the representation of V(G) with

regard to W are distinct. As a result, the circular diameter of G is 2(n — 1), implies that G = PB,.

Theorem 3.5. Let G be a connected graph of order n > 3. If every pair of vertices of G is a circular
diametral path of G. Then cdim.(G) =n—1
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Proof: Assume that every pair of vertices of G is circular diametral path of G. Therefore

D¢(u,v) =n forall u,v € V(G). Hence it follows that every circular resolving set of G contains at
least n-1 elements. Also, G[W] is connected. Hence cdim.(G) =n — 1.

Remark 3.6. The converse of the Theorem 3.5. need not be true. For the graph G = K; ,,_4,
cdim.(G) = n — 1. But there are at least two vertices say x and y in G such that x — y is not a

circular diametral path of G.

Theorem 3.7. For any pair of integers a and b with 2 < a < b, there exists a connected graph G
such that cdim(G) = a and cdim.(G) = b.

Proof: For a = b, let G =K, then by Theorems 1.1 and 2.7, cdim(G) = cdim.(G) = a. So let
2 < a<b.Let P,_, beapath of order b-a+1 and let V(Py_q441)={v1, V5, ..., Vp_as1}- LEL G be the
graph obtained from by adding the new vertices uy,u,,..,u, and introducing the edge

Vy_q+1U; (1 < i < a). The graph is shown in Figure 3.1.

Figure 3.1

First, we prove that cdim(G) = a. Let Z = {uy,u,, ..., u,}. Then every circular resolving
set of G contains atleast a — 1 vertices from Z and the vertex v; and so cdim(G) 2a—1+1=
a.Let S =Z U {v,}. Then S is a circular resolving set of G so that cdim(G) = a. Next, we prove
that cdim.(G) = b. By Observation 2.4(ii), Z; = {v,, V3, ..., Vp_q+1} IS a subset of every
connected circular resolving set of G. Also it is easily seen that every connected circular resolving
set of G contains atleast a-1 vertices from Z and the vertex v, and so cdim.(G) =b—a+ 1+
a—1=b. Let S; =SUZ;. Then S; is a connected circular resolving set of G so that
cdim.(G) = b.
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Conclusion

This article established a novel circular distance metric called the connected circular metric
dimension in graphs. We will develop this concept to incorporate more distance considerations in

a subsequent investigation.
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