

SOME OPERATORS ON P*GB CLOSED SETS

Aruna Glory Sudha^{1*}, S. Zion Chella Ruth²

Abstract

T. Selvi and A. PunithaDharani [3] introduced pre*-closed sets and investigated some of their properties. This paperis devoted to p*gb Border, p*gb Frontier and p*gbExterior of a subset of a topological space. We investigate the fundamental properties of the above speculations and explore the inner relationship between them.

AMS Subject Classification:54A05

Keywords: p*gb-Border, p*gb-Frontier, p*gb-Exterior

DOI: 10.53555/ecb/2022.11.12.263

¹*Research Scholar, Department of Mathematics, Nazareth Margoschis College at Pillaiyanmanai, Nazareth. Registration Number: 21212152092002 (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamil Nadu, India.)

²Assistant Professor, Department of Mathematics, Nazareth Margoschis College at Pillaiyanmanai, Nazareth (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamil Nadu, India)

^{*}Corresponding author: Aruna Glory Sudha

^{*}Research Scholar, Department of Mathematics, Nazareth Margoschis College at Pillaiyanmanai, Nazareth. Registration Number: 21212152092002 (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamil Nadu, India.)

1. INTRODUCTION

The concept of generalized Closed sets introduced by Levine [2] plays a significant role in General Topology. In 2012, T. Selvi and A. Punitha Dharani [3] introduced pre*-closed sets and investigated some of their properties. The characterizations of pre*-generalized b-closed sets and pre*-generalized b-open sets are given in [4]. This paperis devoted to p*gb Border, p*gb Frontier and p*gb Exterior of a subset of a topological space. We investigate the fundamental properties of the above speculations and explore the inner relationship between them.

2.PRELIMINARIES

Throughout this paper (X, τ) represent a topological space on which no separation axiom is assumed unless otherwise mentioned. For a subset A of a topological space X, cl(A) and int(A) denote the closure of A and the interior of A respectively. (X, τ) will be replaced by X if there is no changes of confusion. We recall the following definitions and results.

Definition 2.1.[1] Let (X, τ) be a topological space. A subset A of the space X is said to be bopen if $A\subseteq int(cl(A))\cup cl(int(A))$ and b-closed if $int(cl(A))\cap cl(int(A))\subseteq A$.

Definition 2.2.[1] Let (X, τ) be a topological space and $A \subseteq X$. The b-closure of A, denoted by bcl(A) and is defined by the intersection of all b-closed sets containing A.

Definition 2.3.[2] Let (X, τ) be a topological space. A subset A of X is said to be generalized closed (briefly g-closed) if $cl(A) \subseteq U$ whenever A $\subseteq U$ and U is open in (X, τ) . The complements of the above mentioned g closed set is g open set.

Definition 2.4. Let A be a subset of a topological space (X, τ) . Then the union of all g-open sets contained in A is called the g-interior of A and it is denoted by int*(A). That is, int*(A)= \cup {V:V \subseteq A and V \in g-O(X)}.

Definition 2.5. Let A be a subset of a topological space (X, τ) . Then the intersection of all g-closed sets in X containing A is called the g-closure of A and it is denoted by $cl^*(A)$. That is, $cl^*(A) = \cap \{F: A \subseteq F \text{ and } F \in g-C(X)\}$.

Definition 2.6. [3] Let (X, τ) be a topological space. A subset A of the space X is said to be pre*-open if $A \subseteq int*(cl(A))$ and pre*-closed if $cl*(int(A)) \subseteq A$.

Definition 2.7.[4] A subset A of a topological space (X, τ) is called a pre* generalized b-closed set (briefly, p*gb-closed) if $bcl(A) \subseteq U$ whenever $A \subset U$ and U is pre*-open in (X, τ) .

Lemma 2.8.[4]For a topological space (X, τ) , Every open set is p*gb-open.

Lemma 2.9. [4]

- (a) Arbitrary intersection of p*gb-closed sets is p*gb-closed.
- (b)Arbitrary union of p*gb-open sets is p*gb-open.

Remark 2.10.[4]

- (a) The union of p*gb-closed sets need not be a p*gb-closed set.
- (b) The intersection of p*gb-open sets is p*gb-open.

Definition 2.11.[5] Let X be a topological space and let $x \in X$. A subset N of X is said to be a p*gb-neighbourhood (shortly, p*gb-nbhd) of x if there exists a p*gb-open set U such that $x \in U \subseteq N$.

Theorem 2.12.[5] Every nbhd N of $x \in X$ is a p*gb-nbhd of x.

Definition 2.13.[5] Let A be a subset of a topological space (X, τ) . Then the union of all p*gb-open sets contained in A is called the p*gb-interior of A and it is denoted by p*gbint(A). That is, p*gbint(A)= $\cup\{V:V\subseteq A \text{ and } V\in p*gb-O(X)\}$.

Theorem 2.14.[5] Let A be a subset of a topological space (X, τ) . Then

- (a) p*gbint(A) is the largest p*gb-open set contained in A.
- (b) A is p*gb-open if and only if p*gbint(A)=A.
- (c) $p*gbint(\phi) = \phi$ and p*gbint(X) = X.
- (d) If $A \subseteq B$, then $p*gbint(A) \subseteq p*gbint(B)$.
- (e) p*gbint(p*gbint(A))=p*gbint(A).

Definition 2.15. [5] Let A be a subset of a topological space (X, τ) . Then the intersection of all p*gb-closed sets in X containing A is called the p*gb-closure of A and it is denoted by p*gbcl(A). That is, p*gbcl(A)= \cap {F:A \subseteq F and F \in p*gb-C(X)}. The intersection of p*gb-closed set is p*gb-closed, then p*gbcl(A) is p*gb-closed.

Theorem 2.16.[5] Let A be a subset of a topological space (X, τ) . Then

- (a) p*gbcl(A) is the smallest p*gb-closed set containing A.
- (b) A is p*gb-closed if and only if p*gbcl(A)=A.

- (c) $p*gbcl(\phi) = \phi$ and p*gbcl(X) = X.
- (d) If $A \subseteq B$, then $p * gbcl(A) \subseteq p * gbcl(B)$.
- (e) p*gbcl(p*gbcl(A))=p*gbcl(A).

3.p*gb-border and p*gb-frontier

Definition 3.1. Let A be a subset of X. Then the set $B_{p*gb}(A)=A\backslash p*gbint(A)$ is called the p*gb-border of A. The set $Fr_{p*gb}(A)=p*gbcl(A)\backslash p*gbint(A)$ is called the p*gb-frontier of A.

Example 3.2.Let $X = \{a,b,c\}$ with $\tau = \{X, \phi, \{a\}, \{a,b\}\}$. Here, the p*gb closed sets are = $\{X, \phi, \{b\}, \{c\}, \{b,c\}\}$.

 $\begin{array}{lll} Let & A = \{a,c\}. & Then & B_{p^*gb}(A) = A \backslash p^*gbint(A) \\ = \{a,c\} \backslash \{a,c\} = \{ & \phi \ \} \text{and} & Fr_{p^*gb}(A) = p^*gbcl(A) \\ \backslash p^*gbint(A) = X \setminus \{a,c\} = \{b\}. \end{array}$

Theorem 3.3. If a subset A of X is p*gb-closed, then $B_{p*gb}(A)=Fr_{p*gb}(A)$.

Proof: Let A be a p*gb-closed subset of X. Then by Theorem 2.16, p*gbcl(A)=A. Now, $Fr_{p*gb}(A)=p*gbcl(A)\p*gbint(A)=A\p*gbint(A)=B_{p*gb}(A)$.

Theorem 3.4. For a subset A of X, $A=p*gbint(A) \cup B_{p*gb}(A)$

Proof: Let $x \in A$. If $x \in p^*gbint(A)$, then the result is obvious. If $x \notin p^*gbint(A)$, then by the definition of $B_{p^*gb}(A)$, $x \in B_{p^*gb}(A)$. Hence $x \in p^*gbint(A) \cup B_{p^*gb}(A)$ and so $A \subseteq p^*gbint(A) \cup B_{p^*gb}(A)$. On the other hand, since $p^*gbint(A) \subseteq A$ and $B_{p^*gb}(A) \subseteq A$, then we have $p^*gbint(A) \cup B_{p^*gb}(A) \subseteq A$. This proves (i).

Theorem 3.5. For a subset A of X, $p*gbint(A) \cap B_{p*gb}(A) = \phi$

Proof. Suppose $p*gbint(A) \cap B_{p*gb}(A) \neq \phi$. Let $x \in p*gbint(A) \cap B_{p*gb}(A)$. Then $x \in p*gbint(A)$ and $x \in B_{p*gb}(A)$. Since $B_{p*gb}(A) = A \setminus p*gbint(A)$, then $x \in A$. But $x \in p*gbint(A)$, $x \in A$. A contradiction exists. Hence $p*gbint(A) \cap B_{p*gb}(A) = \phi$

Theorem 3.6For a subset A of X, A is a p*gbopen set if and only if $B_{p*gb}(A) = \phi$

Proof. Necessity: Let A be p*gb-open. Then by Theorem 3.4, p*gbint(A)=A. Now, $B_{p*gb}(A)=A \p^*gbint(A)=A \A= \phi$. Sufficiency: Suppose $B_{p*gb}(A)=\phi$. This implies, $A \p^*gbint(A)=\phi$. Therefore A=p*gbint(A) and hence A is p*gb-open.

Theorem 3.7. For a subset A of X, $B_{p*gb}(p*gbint(A)) = \phi$.

By the definition of p*gb-border, $B_{p*gb}(p*gbint(A))=p*gbint(A)\setminus p*gbint(p*gbint(A))$. By Theorem 3.4, p*gbint(p*gbint(A))=p*gbint(A) and hence $B_{p*gb}(p*gbint(A))=\phi$.

Theorem 3.8. For a subset A of X, $p*gbint(B_{p*gb}(A)) = \phi$.

Proof. Let $x \in p^*gbint(B_{p^*gb}(A))$. Since $B_{p^*gb}(A) \subseteq A$, by Theorem 3.5, $p^*gbint(B_{p^*gb}(A)) \subseteq p^*gbint(A)$. Hence $x \in p^*gbint(A)$. Since $p^*gbint(B_{p^*gb}(A)) \subseteq B_{p^*gb}(A)$, then $x \in B_{p^*gb}(A)$. Therefore $x \in p^*gbint(A) \cap B_{p^*gb}(A)$. By part (ii), $x = \phi$.

Theorem 3.9. For a subset A of X, B_{p*gb} $(B_{p*gb}(A))=B_{p*gb}(A)$

Proof. By the definition of p*gb-border, $\begin{array}{lll} B_{p^*gb}(B_{p^*gb}(A)) &= B_{p^*gb}(A) \backslash p^*gbint(B_{p^*gb}(A)). & By \\ part & (v), & p^*gbint(B_{p^*gb}(A)) = & \phi & and & hence \\ B_{p^*gb}(B_{p^*gb}(A)) &= B_{p^*gb}(A). & & \end{array}$

Corollary 3.10. For a topological space, $B_{p*gb}(\phi) = \phi$ and $B_{p*gb}(X) = \phi$.

Proof: As ϕ and X are p*gb-open, the aforementioned theorem $B_{p^*gb}(\phi) = \phi$ and $B_{p^*gb}(X) = \phi$.

Theorem 3.11. For a subset A of a space and X, the following statements are equivalent

- (a) A is p*gb-open
- (b) A=p*gbint(A)
- (c) $B_{p*gb}(A) = \phi$.

Proof: (a) \rightarrow (b)Obvious from Theorem 2.14(b). (b) \rightarrow (c). Suppose that A=p*gbint(A). Then by Definition, B_{p*gb}(A)= p*gbint(A)\p*gbint(A)= ϕ (c) \rightarrow (a). Let B_{p*gb}(A)= ϕ . Then by Definition, A\p*gbint(A)= ϕ and hence A=p*gbint(A).

Theorem 3.12. Let A be a subset of X. Then, $B_{p*gb}(A)=A\cap p*gbcl(X\setminus A)$

Proof:Since $B_{p*gb}(A)=A\backslash p*gbint(A)$ and since $p*gbint(A)=X\backslash p*gbcl(X\backslash A)$,

 $B_{p*gb}(A)=A\setminus(X\setminus p*gbcl(X\setminus A))$

 $=A\cap (X\setminus (X\setminus p^*gbcl(X\setminus A))=A\cap p^*gbcl(X\setminus A). \ This proves \ B_{p^*gb}(A)=A\cap p^*gbcl(X\setminus A).$

Theorem 3.13. Let A be a subset of X. Then A is p*gb-closed if and only if $Fr_{p*gb}(A) \subseteq A$.

Proof: Necessity: Suppose A is p*gb-closed. Then by Theorem 2.16, p*gbcl(A)=A. Now, $Fr_{p*gb}(A)=p*gbcl(A)\p*gbint(A)=A\p*gbint(A)\subseteq A$. Hence $Fr_{p*gb}(A)\subseteq A$. Sufficiency: Assume that, $Fr_{p*gb}(A)\subseteq A$. Then p*gbcl(A)\p*gbint(A)\subseteq A. Since p*gbint(A)\subseteq A, then we conclude that p*gbcl(A)\subseteq A. Also $A\subseteq p*gbcl(A)$. Therefore p*gbcl(A)=A and hence A is p*gb-closed.

Theorem 3.14. For a subset A of X, $p*gbcl(A)=p*gbint(A)\cup Fr_{p*gb}(A)$.

Proof:

Since $p*gbint(A) \subseteq p*gbcl(A)$ and $Fr_{p*gb}(A)$ $\subseteq p*gbcl(A)$, then p*gbint(A)U Fr_{p*gb} Let $x \in p*gbcl(A)$. Suppose $(A)\subseteq p*gbcl(A).$ $x \notin Fr_{p*gb}(A)$. Since, then $x \in p*gbint(A)$. Hence $x \in p*gbint(A) \cup Fr_{p*gb}(A)$ and hence $p*gbcl(A) \subseteq p*gbint(A) \cup Fr_{p*gb}(A)$.

Theorem 3.15. For a subset A of X, $p*gbint(A) \cap Fr_{p*gb}(A) = \phi$.

Proof. Suppose $p^*gbint(A) \cap Fr_{p^*gb}(A) \neq \phi$. Let $x \in p^*gbint(A) \cap Fr_{p^*gb}(A)$. Then $x \in p^*gbint(A)$ and $x \in Fr_{p^*gb}(A)$, which is impossible to x belongs to both $p^*gbint(A)$ and $Fr_{p^*gb}(A)$, since $Fr_{p^*gb}(A) = p^*gbint(A) \cap Fr_{p^*gb}(A) = \phi$.

Theorem 3.16. For a subset A of X, $B_{p*gb}(A) \subseteq Fr_{p*gb}(A)$.

Proof. Since $A \subseteq p^* gbcl(A)$, then $A \setminus p^* gbint(A)$ $\subseteq p^* gbcl(A) \setminus p^* gbint(A)$. That implies, $B_{p^* gb}(A)$ $\subseteq Fr_{p^* gb}(A)$.

4.p*gb-Exterior

Definition 4.1. Let A be a subset of a topological space (X, τ) . The p*gb-interior of $X \setminus A$ is called the p*gb-exterior of A and it is denoted by $\operatorname{Ext}_{p*gb}(A)$. That is, $\operatorname{Ext}_{p*gb}(A) = p*gbint(X \setminus A)$.

Example 4.2. Let $X = \{a,b,c\}$ with $\tau = \{X, \phi, \{a\}, \{a,b\}\}$. Here, the p*gb closed sets are = $\{X, \phi, \{b\}, \{c\}, \{b,c\}\}$.

Let $A=\{a,c\}$. Then $Ext_{p*gb}(A)=p*gbint(X\backslash A)=p*gbint(\{b\})=\phi$.

Theorem 4.3. For a subsets A and B of X, the followings are valid.

- (i) $Ext_{p*gb}(A)=X\p*gbcl(A)$.
- (ii) $\operatorname{Ext}_{p*gb}(\operatorname{Ext}_{p*gb}(A)) = p*gbint(p*gbcl(A)) \supseteq p*gbint(A).$
- (iii) If $A \subseteq B$, then $\operatorname{Ext}_{p*gb}(B) \subseteq \operatorname{Ext}_{p*gb}(A)$.
- (iv) $\operatorname{Ext}_{p*gb}(A \cup B) \operatorname{Ext}_{p*gb}(A) \cap \operatorname{Ext}_{p*gb}(B)$.
- (v) $Ext_{p*gb}(A \cap B)$ _ $Ext_{p*gb}(A) \cup Ext_{p*gb}(B)$.
- (vi) $\operatorname{Ext}_{p*gb}(X) = \phi$ and $\operatorname{Ext}_{p*gb}(\phi) = X$.
- (vii) $Ext_{p*gb}(A)=Ext_{p*gb}(X\setminus Ext_{p*gb}(A)).$

Proof.

- (i) We know that, $X \neq gbcl(A) = p*gbint(X \land A)$, then $Ext_{p*gb}(A) = p*gbint(X \land A) = X \land p*gbcl(A)$.

- $=p*gbint(X\p*gbint(X\A))$ $=p*gbint(p*gbcl(A)) \supseteq p*gbint(A).$
- (iii) Suppose $A\subseteq B$. Now, $Ext_{p*gb}(B)=p*gbint(X\backslash B)\subseteq p*gbint(X\backslash A)=Ext_{p*gb}(A)$. This proves (iii).
- (iv) $\operatorname{Ext}_{p*gb}(A \cup B) = p*gbint(X \setminus (A \cup B)) = p*gbint((X \setminus A) \cap (X \setminus B)) \subseteq p*gb(X \setminus A) \cap p*gbcl(X \setminus B) = Ex t_{p*gb}(A) \cap \operatorname{Ext}_{p*gb}(B).$
- $\begin{array}{ll} \text{(v)} & Ext_{p*gb} & (A \cap B) = p*gbint(X \setminus (A \cap B)) = \\ & p*gbint((X \setminus A) \cup (X \setminus B)) \supseteq p*gb(X \setminus A) \cup p*gbcl(\\ & X \setminus B) = Ext_{p*gb}(A) \cup Ext_{p*gb}(B). \end{array}$
- (vi) Now, $\operatorname{Ext}_{p*gb}(X)=p*gbint(X\backslash X)=p*gbint(\phi)$ and $\operatorname{Ext}_{p*gb}(\phi)=p*gbint(X\backslash \phi)=p*gbint(X)$. Since ϕ and X are p*gb-open sets, then $p*gbint(\phi)=\phi$ and p*gbint(X)=X. Hence $\operatorname{Ext}_{p*gb}(\phi)=X$ and $\operatorname{Ext}_{p*gb}(X)=\phi$.
- $\begin{array}{l} \text{(vii) Now,} \\ & \text{Ext}_{p*gb}(X\backslash \text{Ext}_{p*gb}(A)) = \text{Ext}_{p*gb}(X\backslash p*gbint(X\backslash A)) \\)) = p*gbint(X\backslash (X\backslash p*gbint(X\backslash A))) = p*gbint(p*gbint(X\backslash A)) \\ & \text{gbint}(X\backslash A)) \\ & = p*gbint(X\backslash A) = \text{Ext}_{p*gb}(A). \end{array}$ This proves (vii).

References

- 1. Andrijevic, D, 1996, 'On b-open sets', Mat. Vesnik 48, pp.59-64.
- 2. Levine, N,1970'Generalized closed sets in topology', Rand. Circ. Mat. Palermo, 19(2), pp.89-96.
- 3. Selvi, T, PunithaDharani, A, 2012, 'Some New Class of Nearly Closed and Open Sets', Asian Journal of Current Engineering and Maths, vol. 1(5), pp.305-307.
- 4. Aruna Glory Sudha. I, Zion Chella Ruth. S, Pre* Generalized b-Closed Sets in Topological Spaces, Journal of fundamental & Comparative Research, Vol-VIII, Issue-II, No-5, July-December:2022, ISSN:2277 7067, 91-98.
- 5. Aruna Glory Sudha, I, Zion Chella Ruth, S,2023, 'More on p*gb-Closed Sets in Topological Spaces', International Journal of Mathematical Archive, 14(1), pp.10-14. ISSN NO. 2229-5046.
- 6.Malghan S.R, Generalized Closed maps, J.KarnatkUniv.Sci.,27(1982),82-88.