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Abstract: Magnetic helical micro/nano-robots is inspired by the structure of the Escherichia coli 

(E. coli) bacterium. Since low-power magnetic fields are harmless to cells and tissues, magnetic 

helical micro/nano-robots are promising as a medical tool especially for in vivo applications. One 

of the uses of micro/nanorobots is to deliver drugs to cancerous tumors with minimal side effects. 

The present study models the swimming motion of the magnetic micro-robot inside a microchannel 

filled with blood, as a non-Newtonian fluid, using the Stokes equations. The nonlinear coupled 

equations are solved by a finite element method based software. The results indicate that increasing 

the number of helix turns, with a cut-off value, causes the terminal velocity of the microswimmer 

to increase. It is also shown that increases in the helix pitch causes the terminal velocity of the 

microswimmer to increase. Moreover, studies on cylindrical, spherical, and elliptic microswimmer 

heads indicated that the elliptic head has the minimum transverse displacement which is almost 

negligible. 

Keywords: Micro-robot, nano-robot, magnetic helical swimmers, computational fluid dynamics, 

non-Newtonian fluid. 

1 Introduction 

Due to their small size and high mobility, magnetic helical nano-robots have potential applications 

in various areas, including medicine [1]. Magnetic fields with low intensities are harmless to cells 

and tissues. Therefore, magnetic helical nano-robots are promising tools for medical applications, 

such as surgery, cell manipulation, and drug delivery [2, 3]. Inspired by the Escherichia coli (E. 

coli) bacterium, researchers have invented magnetic robots of helical shape [4]. Under a rotating 

magnetic field, these devices can convert a rotational motion into a translational one to propel 

themselves within a fluid medium [5]. According to Abbott et al. microswimmers with helical tails 

and flexible flagella perform better, are faster swimmers, and more efficient than robots that are 

directly controlled by the magnetic field gradient. By modifying the external magnetic field's 

direction and rotational frequency, it is possible to control microswimmers with helical tails [5]. 

In 1973, H. Berg demonstrated that various microorganisms, such as E. coli, rotate their helical 

flagella as a molecular motor to swim in liquids [6]. In 1996, Honda et al. proposed a helical 

mechanism for micro-robots moving in low-Reynolds environments and built the first prototype 

of a helical robot on a centimeter scale. This swimming robot consisted of a 1mm×1mm×1mm 

SmCo magnet connected to a helical copper wire. It was activated wirelessly via an external 

rotating magnetic field and proved its capability to swim in low-Re liquids by swimming in a 

highly viscous oil [7]. Their findings demonstrate that the forward speed of the swimmer increases 
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with the magnetic field frequency and overall helix length, reaching a maximum for the optimal 

wave number [7]. In 2005, the same group reduced the dimensions of the previously used helical 

robot to millimeters and demonstrated the potential of magnetic helical micro-robots to guide 

medical catheters in blood vessels [8]. The first prototype of a magnetic helical robot with artificial 

bacterial flagella was invented in 2007 at the Swiss Federal Institute of Technology in Zürich. This 

microswimmer had a soft magnetic head and a helical tail with a diameter of 3 mm and a length 

of 30-40 mm [9]. Then the movement and swimming behaviors of this magnetic helical robot in 

distilled water were investigated [9]. 

Because of the importance of understanding motion and optimizing the design of microrobots 

inside capillaries and blood vessels, experiments and theoretical research on artificial swimmers 

inside channels and near surfaces have garnered a lot of attention. Although there have been some 

research on natural microswimmers within channels [10, 11, 12, 13, 14, 15] and near solid 

boundaries [16, 17, 18], there have been few studies on bio-inspired artificial swimming 

microrobots. Giacche et al. employed a BEM model to investigate the entrapment of 

microorganisms with helical tails near planar walls. The numerical model fits very well with 

experimental observations, and the helical wavelength and amplitude have a substantial effect on 

the microorganism's stable trajectory [15]. Bacteria were shown to follow circular trajectories near 

solid boundaries that are affected by hydrodynamic processes [16, 17] and changed by Brownian 

forces that modify the organisms distance from the wall [18]. Berke et al. measured the distribution 

of E. coli swimming across glass plates and compared their data to a hydrodynamic model to 

explore the hydrodynamic interactions of swimming organisms with solid surfaces [19]. DiLuzio 

et al. conducted experiments on smooth swimming of Escherichia coli cells in rectangular channels 

with widths ranging from 1.3 to 1.5μm (slightly larger than the diameter of the organism's body) 

and discovered that some surfaces, such as agar rather than PDMS, are preferred by bacteria over 

others [13]. Using the boundary element method, Shum et al. improved the power efficiency of a 

bacterium driven by a single helical flagellum at a solid boundary in relation to the geometrical 

parameters of the cell body and the flagellum. The authors concluded that the shape of bacteria 

influences boundary accumulation; that is, bacteria might be attracted or repelled by solid 

boundaries owing to hydrodynamic interaction according to geometrical parameters of the body 

and flagellum [20]. Temel et al. investigated the movement of a helical magnetic microswimmer 

inside cylindrical glass tubes filled with glycerol using both experimental methods and 

computational models [21, 22]. It has been observed that there is a proportional relationship 

between the time-average velocity and the rotation frequency of the magnetic helical swimmers 

until the step-out frequency, and then the swimmer loses its coordination with the magnetic field 

due to the increase in viscous torque and forward velocity drops [21]. According to the computer 

model results based on CFD solutions of the Stokes equations, swimming near the wall is faster 

than swimming in the center [22]. Furthermore, the model demonstrated that rotating the helical 

tail creates a localized flow around the swimmer, resulting in stresses and torques that change the 

swimmer's orientation in the channel [22]. In 2014, Temel et al. moved a magnetic microswimmer 

in a rectangular channel containing glycerol and investigated the effects of rotational frequency 

and channel surface roughness on the swimmer's movement [23]. Ramia et al. examined the 

swimming of microorganisms with spherical bodies and rotating helical flagella using the BEM 

method for four distinct situations: in an unbounded medium, next to a plane boundary, in the 

middle of two parallel boundaries, and with other swimmers nearby. When the swimmer's 
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swimming velocity and angular velocity in an unbounded fluid are compared to the case with a 

planar boundary, a drop of less than 10% owing to flagellar locomotion is seen. Up to 10% of the 
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velocity can be lost due to interactions with parallel planar boundaries or other nearby swimmers 

[24]. In another study, Goto et al. [25] used the BEM method to study the back and forward motion 

of flagellated bacteria near a planar boundary and observed that swimming trajectories and 

velocities during the swimmer's back and forward motion due to the effects of the pitch angle and 

the angle between the boundary and the helical tail axis are different [25]. Felderhof [26] developed 

an analytical model for swimming infinite helices inside circular channels based on the geometry 

of the helical structure's first order expansion. In-channel swimming is faster and more efficient 

than unbounded swimming, especially for thick tails, according to the data [26]. A comprehensive 

overview and framework for hydrodynamic modeling of swimming organisms, including 

modeling of interactions between bodies and boundaries, were presented by Lauga and Powers in 

2009 [27]. Zhang et al. created a helical filament from GaAs that was attached to a soft magnetic 

nickel body on one side and had dimensions of 1.8 µm in width, 30 µm in length, and 200 nm in 

thickness. The authors used a rotational magnetic field to demonstrate the structure moving 

forward in the direction of the helical axis and noted that linear swimming velocity was influenced 

by both the size of the magnetic head and the strength of the magnetic field [28]. Dreyfus et al. 

created a magnetic microswimmer and showed that the speed of the microswimmer depends on 

the oscillation frequency, the length and the elastic property of the helical of the swimmer [29]. In 

a solution of branched polymer chains, Berg and Turner's [30] research demonstrated that the 

angular velocity of the body of a tethered E. coli cell is inversely proportional to the fluid viscosity, 

supporting Newtonian dynamics. In contrast, the effect is less pronounced in the solution of 

unbranched polymer chains, indicating strong non-Newtonian effects in that situation. Martinez et 

al. demonstrated that the swimming dynamics are greatly impacted by the non-Newtonian fluid's 

microrheology rather than the properties at macroscales assumed in a classical continuum fluid 

model [31]. Henry et al. demonstrated that the swimming speed in a continuous viscoelastic fluid 

monotonically declines with rising Deborah number (De) for an infinitely long filament passing a 

helical travelling wave of small amplitude [32]. On the other hand, a helical filament with a large 

pitch angle has been shown to swim with a speed that depends non-monotonically on the Deborah 

number [33, 34]. Li and Spagnolie [35] investigated the motion of helical bodies with arbitrary 

cross sections by solving the Stokes equations in a helical coordinate system. They demonstrated 

that for helices of any cross-section and in a viscoelastic fluid, the speed of each mode of the small 

amplitude helical wave is proportional to the real part of the complex viscosity. This conclusion 

holds true even when swimming is restricted to a tube. Demir et al showed that nonlocal shear- 

thinning effects substantially enhance the helical propulsion [36]. Dasgupta et al. [37] investigated 

the speed of propulsion of waving sheets inserted in freely rotating cylinders. When compared to 

the Newtonian limit, elastic fluids with shear-thinning viscosities (carboxymethyl cellulose and 

polyethylene oxide) invariably result in a drop in locomotion speed. Alperen et al. simulated the 

motion of a helical magnetic microswimmer inside a circular channel containing liquid glycerol 

and obtained the microswimmer's linear and angular velocities [38]. 

In this study, the effects of the geometric parameters of the number of helix turns, the helix pitch 

and the head of the microswimmer in the swimmer's movement are investigated in order to provide 

a microswimmer that has the highest speed and the most stable movement for swimming in non- 

Newtonian blood flow. The swimming of the helical microrobot inside a blood-filled 

microchannel, as a non-Newtonian fluid, is modeled using Stokes equations, and then the 

discretized equations are solved using a finite element based software. 
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2 Problem statement 

This schematic of the microswimmer and the microchannel filled with blood is depicted in Fig.1. 

As shown by Fig.1, the system consists of a cylindrical microchannel (acting as the blood vessel) 

and a helical object modeling the E. coli bacterium. The microswimmer is made up of a NdFeB 

magnetic cylindrical head and a copper helical tail. Moreover, the fluid inside the microchannel is 

non-Newtonian, obeys the generalized power law, and possesses the characteristics of blood. The 

details of the microswimmer parameters are displayed in Fig. 1. We considered the initial value of 

microswimmer parameters and microchannel dimensions based on Alperen's paper [38] and listed 

them in Table 1. 
 

Fig. 1. Geometric parameters of the microswimmer 

Table 1. Details of the initial microswimmer parameters and the microchannel dimensions 
 

Description Symbol Parameter value 

The head's diameter Dh 400 µm 

The head's length Lh 600 µm 

Wavelength of the helical tail  625 µm 

Radius of the helical tail B0 200 µm 

The helix length Lt 1250 µm 

The helix diameter Dw 130 µm 

Total length of the microswimmer Ls 1850 µm 

Channel diameter Dc 1000 µm 

Channel length Lc 3000 µm 

Number of waves n 3 

Frequency f 1 Hz 
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3 Governing equations and boundary conditions 

The governing continuity and the Navier-Stokes equations for an incompressible fluid are as 

follows, respectively: 
 

 

.uf  0 (1) 
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 u

f  u .u 
 
 p  f  . μu 
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f f  f 
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Where  , uf , p ,  , and f represent the dynamic viscosity, fluid velocity, pressure, density, and 

body force, respectively. Furthermore the Reynolds number used is based on the microswimmer 

diameter, as a length scale, and the tangential velocity of the microswimmer head, as the flow 

velocity, is determined as follow: 
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Here, ωx  2πf denotes the angular velocity of the microswimmer along the x-direction, where f 

denotes the angular frequency and Dh represents the diameter of the microswimmer’s head. Since 

the rotational frequency equals 1 Hz, the flow behaves as creeping flow because the Reynolds 

number is significantly smaller than 1. The governing equation representing the creeping flow in 

the microchannel is the simplified form of the Navier-Stokes equation and is as follow: 
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2
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f (4) 

To model the non-Newtonian behavior of blood, any of the Low Power, Casson, Carreau, and 

Generalized Power Law models can be used, but since in this problem, the shear stress rate is 

small, the best model to determine the non-Newtonian fluid behavior of blood is the Generalized 

Power Law model [39]. The Generalized Power Law model for modeling the non-Newtonian 

behavior of blood is as follows: 
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Here, represents the strain rate. The other parameters are based on Ballyk et. al. [40] and are 

  0.0035 Pa.s , n  1 ,   0.025Pa.s , n  0.45 , a  50 s-1 , b= 3 s-1 , c  50 s-1 , and 
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d = 4 s-1 [39]. 

The boundary conditions are [38]: 
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1. The no-slip condition on the microchannel wall 

2. The slip-free moving wall condition at the microswimmer’s surface 

3. The periodic boundary condition at the inlet and outlet of the channel 

Although the pulsatile blood velocity should be included in the problem to have a comprehensive 

study; here, to avoid the complexity and convergence issues, since it was decided to find just the 

effects of geometrical parameters; following some other studies, the fluid velocity effects are not 

considered [22, 23, 38]. 

Since the Knudsen number for blood flow; based on the size of red blood cells, is about 0.336<1, 

the no-slip condition on the blood-microchannel and blood-microswimmer walls is justified [41]. 

The linear and angular velocity vectors is employed to calculate the local velocity at the moving 

boundary of the microswimmer. The moving wall boundary condition is defined as follow: 
 

Usw  x   x - xcom 

u = 

V 

 
+ 
  × 

 
y - y 




  sw    y   com 
Wsw 

 z 
  z - z

com  


 

(8) 

 

Where Usw , Vsw , and Wsw represent the linear velocities and x , y 
, and z denote the angular 

velocities of the microswimmer along the x-, y-, and z-directions, respectively. Furthermore, the 

xcom , ycom , and zcom 
represent the center of microswimmer mass. 

In order to avoid burdening the calculations, the domain of solution (microchannel) should be 

considered small enough. Therefore, defining the periodic boundary conditions for the input and 

output of the microchannel, helps to have the domain of the problem in an expanded form. 

The magnitude of the angular velocity component along the x-direction, x , is known because of 

knowing the value of frequency f. On the other handUsw , Vsw , and Wsw , as well as y   and z are 

unknown. Therefore five equations are needed to determine them. Two unknowns, the angular 

velocities y    
and z , are insignificant [22] and are considered to be zero. Therefore the number 

of unknown parameters reduces to three, which are determined from the force-free swimming 

condition by setting all fluid forces exerted on the microswimmer's surface equal to zero. 

Since the net force exerted on the microswimmer by the fluid is determined by integrating the fluid 

stresses applied on the microswimmer surface, the force-free condition reads: 
 

f j   S 
σ j.nsds  0 

swimmer 

(9) 
 

Where j = x, y,z , σ , and ns represent the direction, fluid stress tensor, and the vector normal 

to the surface, respectively. Similar to force-free swimming condition, the moment-free swimming 

conditions are applied to determine the angular velocities along the y- and z-directions, as follows: 
 

τy  S 
 z  zcom σx   x  xcom σz  nsds  0 
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(B) (A) 

Where x, y, and z are coordinates of a point on the microswimmer's surface, and 

zcom denote the coordinates of the center of mass. 

xcom , ycom and 

Equations (1), (4), (9), (10) and (11) with the mentioned boundary conditions were solved by 

Galerkin finite element method. The meshes were triangular and tetrahedral. 

 

4 Numerical procedures 

One of the methods for solving boundary value problems is the Galerkin finite element method 

[42, 43]. In this method, if you consider Ω as part of the spatial domain of the microchannel 

problem, the spatial domain in question is discretized by a large number of Ns, which are the 

vertices of the mesh elements. The domain is discretized by the mesh elements. Each n-vertex 

network is called a test function ĝn . The test function ĝn is a linear function. Fig.2A is the front 

view of the microchannel and Fig.2B is part of the microchannel domain with a test function  ĝn . 
 

Fig. 2. Microchannel geometry. (A) View from the front of the microchannel. (B) Part of the 

microchannel domain. 
 

As shown in Fig.2B, the test function ĝn is located at the top of the n-shaped grid and the whole 

spatial  domain  is  covered  by  the  set  of  test  functionsĝ
n  .  Each  spatial  domain 

expressed as Eq. (12) according to the test function. 

gr can be 

 

g r  an  ĝr 

n 
(12) 

 

In the domain Ω, a boundary value problem can be defined as a differential equation in the form 

of Eq. (13). 
 

.J  F  0 (13) 

In Eq. (13),  is the differential operator, J is the problem equation, and F is the excitation 

function. In our problem, J is expressed by Eq. (14). 
 

J   P  uf (14) 
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In Galerkin method, by multiplying the test function ĝm (r)  in Eq. (13) and integrating over the 

volume of the domain, the equation of weak form is obtained as Eq. (15). 
 

 ĝm r  .J g r  Fr  0   dV  0 
Ω 

(15) 
 

Using Eq. (12), the linear differential operator J g r can be written as Eq. (16). 
 

J g r   anJ ĝn r
n 

(16) 

The matrix form of Eq. (17) is obtained by placing Eq. (16) in Eq. (15). 
 

Ka  F (17) 

In Eq. (17), the parameter a = {an} is the coefficient of expansion, K is the stiffness matrix and 

F is the force vector. These values of K and F are in the form of Eq. (18) and (19), respectively. 
 

kmn   ĝm r . J ĝn  r  dV 
Ω 

(18) 

Fm   ĝm r  Fr dV 
Ω 

(19) 

 

Using finite element software, the discrete Eq. (17) with the mentioned boundary conditions is 

solved. 

 Verification 

For verification, the resulting linear velocity of the microswimmer in glycerol as a function of the 

helix turns is compared with that of Alperen et al. [38]. As shown in Fig. 3, the results are in good 

agreement with the reference article. It must be noted that a negative velocity indicates that the 

microswimmer is swiming in a direction opposite to that of the default coordinates axis. 

Fig. 3. The graph showing a comparison between the present work and the reference paper 



 Numerical Simulation of a Helical Magnetic Microswimmer Motion in the Non-Newtonian Blood  
                                                                                                                                      Section A-Research paper 
  

1073 
Eur. Chem. Bull. 2023,12(8), 1063-1080  

 

 Mesh independence 

The mesh independence of the simulation results must be examined to ensure their validity. To 

this end, the mesh size must be refined up to a point at which the results converge. The convergence 

of the results indicates that the mesh is appropriate and may be used for the given equations and 

geometry. Since the aim of the present study is the investigation of the geometrical parameters of 

a microswimmer during forward motion for drug delivery to a cancerous tumor, the mesh 

independence was considered in terms of the microswimmer's velocity with respect to time. 
 

 

Fig. 4. Mesh independence graph 

 

 
Mesh sizes of 25952, 45898, 102356, and 306540 were used to study mesh independence. As 

shown in Fig. 4, the graph of linear velocity versus time converges to 0.22 with an increase in the 

mesh size for an angular velocity of 2π. This graph changes to a line with an almost zero slope 

after the time 0.1s for a mesh size of 306540. Hence, we used a mesh size of 306540 for the 

solution. The mesh with a size of 306540 looks like the Fig. 5. 

Fig. 5. The finite element mesh distribution on the surface and volume of the microchannel 

and the microswimmer 
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5 Results and discussion 

In this section the effects of the geometric parameters of the microswimmer, namely the body 

shape, number of helix turns, and pitch of the helix, on the forward displacement and velocity of 

the microswimmer are studied in order to determine the optimal shape of a microswimmer 

swimming through blood flow with the aim of delivering drugs to a cancerous tumor. 

To this end, a cylindrical microswimmer with a head length of 600 µm, a head diameter of 400 

µm, and 3 helix turns at the center of the microchannel was considered as a reference. The 

geometry of the reference microswimmer selected to study the geometric parameters is shown in 

Fig. 6. The frequency of the rotating magnetic field was considered to be 1 Hz in all the simulations 

in order for the angular velocity of the microswimmer, which obeys ωx  2πf , to remain constant. 

Moreover, the microswimmer is at the center of the microchannel containing non-Newtonian 

blood. 
 

Fig. 6. A schematic of the reference geometry used to study the geometric parameters of the 

microswimmer 
 

 Number of helix turns 

To examine the effect of the number of helix turns on the linear displacement and velocity of the 

microswimmer one to four turns were considered for the helix turns with a pitch of 625 µm. Fig. 

7 displays the linear velocity components of the microswimmer for 1, 2, 3, and 4 turns in the helix. 

According to the figure, a rise in the number of turns up to 3 increases the forward terminal velocity 

of the microswimmer (Usw), while a further increase in the number of turns decreases the velocity. 

The terminal velocities of the microswimmer are 0.13 mm, 0.18 mm, 0.22 mm, and 0.20 mm for 

1, 2, 3, and 4 turns, respectively. 
s s s s 
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Fig. 7. The graph of changes in the forward linear velocity of the microswimmer for 1 to 4 

turns in the helix 
 

 Helix pitch of the microswimmer 

The terminal velocity of the microswimmer was determined for pitch values of 525 µm, 575 µm, 

625 µm, 675 µm, 725 µm, 775 µm, and 825 µm in order to study the impact of this parameter. A 

plot of the terminal velocity versus the helix pitch in Fig. 8, indicates a linear increase in terminal 

velocity with a rise in the helix pitch. The microswimmer with 3 helix turns experienced an 
increase in terminal velocity less than 0.05 mm for a 50 µm increase in the helix pitch. The terminal 

s 

velocities corresponding to the smallest and largest helix pitches considered were 0.158 

0.309 mm, respectively. 
s 

mm and 
s 

 

 

Fig. 8. The graph of the forward linear velocity of the microswimmer versus its helix pitch 
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 Microswimmer head 

Cylindrical, spherical, and elliptic head shapes were investigated in order to reduce the drag force 

on the head of the microswimmer optimized with respect to the number of helix turns. A 

comparison between the x-direction displacements demonstrated that the smallest displacement 

corresponded to the spherical head. This is due to the pressure drag exerted on the head. Moreover, 

the displacements corresponding to the cylindrical and elliptic heads were almost identical with 

the difference being that the displacements along the y- and z-directions were almost zero for the 

elliptic microswimmer. The displacement graphs are shown in Figs 9-11, for the spherical, elliptic 

and cylindrical head shapes, respectively. 
 

Fig. 9. The displacement-time graph of the microswimmer with the spherical head 

 

Fig. 10. The displacement-time graph of the microswimmer with the elliptic head 
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Fig. 11. The displacement-time graph of the microswimmer with the cylindrical head 

 

 
6 Conclusion 

In this study, the motion of a microswimmer inside a microchannel is numerically simulated to 

investigate the effects of geometric parameters of the microswimmer. The following overall 

conclusions can be drawn: 

1. A study of the geometric parameters of the microswimmer indicated that the number of helix 

turns is a major parameter affecting the forward displacement and velocity of the microswimmer. 

With the omission of the microswimmer’s tail, the magnetic cylinder was observed to move only 

about 3 µm. Furthermore, the microswimmer underwent its largest displacement, about 220 µm, 

for 3 helix turns. In addition, there is a cut-off value for helix turns after which the velocity of the 

microswimmer decreases with the increase of turns. 

2. As the helix pitch was increased from 525 µm to 825 µm with 50 µm increments, the terminal 

velocity of the microswimmer increased from 0.158 mm to 0.309 mm with an approximate rate of 
s s 

0.05 mm. 
s 

3. Spherical, cylindrical, and elliptic head shapes were investigated, and it was observed that the 

microswimmer with the elliptic head exhibited smaller displacements along the y- and z-directions 

due to a reduction in the pressure drag compared to those with the spherical and cylindrical shapes. 
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