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Abstract 

In the framework of the fractional-order Caputo-Fabrizio differential, the mathematical modelling is 

established for a thick cylindrical body under the influence of a heat source. The Robin conditions for the 

limits of heat exchange on the curved outer surface are set to zero, while additional cross-sectional heating 

has been applied to the top and bottom surfaces of the body. The governing equation for the mathematical 

modelling is solved analytically and evaluated computationally using the integral transformation technique. 

The results obtained from the thermal variations are presented graphically and illustrated numerically, 

assuming the material properties of aluminium metal. 

 

Keywords: Caputo-Fabrizio derivative, thermal variation, integral transform, cylindrical body.  

 
1,2*Mechanical Engineering Department, Yeshwantrao Chavan College of Engineering, Nagpur, INDIA 
3Mathematics Department, S. B. Jain Institute of Technology, Management 

And Research, Nagpur, INDIA 
4Mechanical Engineering Department, Priyadarshini College of Engineering, Nagpur, INDIA 
 

*Corresponding Author: N.P. Mungle 

* Mechanical Engineering Department, Yeshwantrao Chavan College of Engineering, Nagpur, INDIA  

Email: npdmungle@gmail.com 

 

DOI: - 10.48047/ecb/2023.12.si10.00140 

https://www.ycce.edu/
https://www.ycce.edu/
mailto:npdmungle@gmail.com


Study Of The Heat Source Problem In A Cylindrical Body With Caputo-Fabrizio Derivatives            Section A-Research Paper 

 

Eur. Chem. Bull. 2023, 12(Special Issue 10), 1166 – 1175 1167 

Introduction 

In the last decade, many studies have proved that 

fractional calculus has successfully described the 

physical process that occurs at the microscopic 

level. Also, mathematical modelling based on 

fractional calculus is suitable because it predicts a 

retarded response, not the instant that happens 

while using a traditional model. Caputo and 

Mainardi [1, 2, 3 4] analysed memory mechanisms 

in linear dissipation models or elastic solids and 

showed experimental results. A thermal theory of 

a fractional kind that incorporates memory 

influence is used in the study of thermal elastic 

problems. Povstenko [7, 8] first published 

research on fractional-order thermoelasticity. In a 

non-axisymmetric problem of solving the infinite 

cylindrical structure, Povstenko [9, 10] derived an 

appropriate diffuse waveform equation's response 

by employing the time order of the fractional 

derivative. 

A novel definition of fractional order derivative 

without a single kernel was provided by Caputo 

and Fabrizio [11]. Improved fractional derivatives 

that are compatible and utilise a non-singular and 

non-local kernel have been put forward by Abdon 

and Dumitru [12]. Shaikh et al. Provided a 

nonlinear differential model that included the 

Caputo-Fabrizio statement in [13] and 

demonstrated its existence and uniqueness 

criterion. They also evaluated its solution by 

applying the method of the iterative Laplace 

transform. The improved definition, which 

includes the Caputo-Fabrizio fractional 

differential equation operator combined with the 

nonlinear fraction heat theory, has been described 

by Yepez and Gomez [14]. Amal et al. [15] 

proposed an analytical study that involves 

differential operators of the Caputo-Fabrizio type 

with a nonsingular kernel and trigonometric and 

exponential functions. Making use of the 

fundamental transformation, Maiti et al. [16] 

investigated the blood flow concept with a fraction 

time-order derivation under thermal radiation. 

Also, they find the blood flow velocity, 

temperature, and concentration. Thakare et al. [17] 

examined the impact of inhomogeneity on a two-

dimensional thick hollow cylinder under fractional 

order derivatives by the integral transform 

method. They also expressed the numerical results 

for both homogeneous and nonhomogeneous 

cases. Elhagary [18,19] studied the fractional-

order infinite medium problem of spherical 

cavities with heating. Gaikwad and Bhandwalkar 

[20] adopted a direct approach to finding a heating 

response in generalised two-temperature 

thermoelastic problems with the influence of the 

differential derivative of the Caputo-Fabrizio kind. 

Lamba and Deshmukh [21] determined the 

hygrothermoelastic response in a finitely extended 

hollow cylindrical region analytically and 

discussed the impacts of the thermal variation in 

the circular cylindrical region for composite 

material. Verma et al. [22] studied memory impact 

in a hollow body and successfully examined 

temperature and moisture effects on diffusion 

wave theory According to the time-fractional 

order theory and the convective heating exchange 

boundary condition, Lamba [23] examined the 

manner in which a thermosensitive hollow 

cylinder would respond. Also, Verghese and 

Khalsa [26] and Gahane et al. [27] contributed 

their work by considering cylindrical body with 

heat source. 

Recently, Khalil et al. [24] described the 

viscothermoelastic phenomenon and 

thermodynamics by modelling mathematical 

models using derivatives of the Caputo-Fabrizio 

type. Abouelregal et al. [6] assumed the heat 

equation with thermal relaxation time and the 

Caputo-Fabrizio differential operator, as well as 

the semi-infinite space model exposed to changing 

heat sources. Further, they apply numerical 

Zakian’s algorithm to solve the governing 

equation and illustrate the effect of fractional and 

magnetic fields graphically. 

 

Heat Equation with Caputo and Fabrizio 

Differential Operator 

Consider a cylindrical body (geometry of the 

problem is as represented in Fig. 1) with a source 

of heating taking up the physical 

space ,a r b h z h     . All other properties 

are taken into account as constant, and the 

cylindrical body's material characteristics are 

homogenized and isotropic in nature The stresses 

are to be computed in a robin-type heat transfer 

process with an internal thermal source and 

according to boundary conditions. 

The differential equation is satisfied by the below 

equation for the operator of Caputo Fabrizio kind: 

 

 
1

; 0,1rr r zz k k
r t






   

 
          

  (1) 

 

Here, prime in the above equations denotes the 

derivative w.r.t. The suffix variable. 

 

Here   is the internal source function, λ  is the 

thermal conductivity of the material, ,/ C   

ρ that is its density, and C  is its heat capacity, 

which is supposed to be constant. 
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Also, 
t








denotes Caputo and Fabrizio 

differential operator specified as 

 

 

0

1
( )exp , 0 1

1 1

t t
t d

t






   

 

 
    

   


 

(2) 

 

For the purpose of ease, let's contemplate.  

   

0 0

0

( ) ( )
,

2

tr r z z
e

r

 



 
  ,0 bra  ,0 hzh  0                                 

(3) 

 

Boundary Restrictions for Initial and 

Convective Thermal Transfer     

The initial and ending conditions for the 

aforementioned heating equations are as follows 

[26, 27]: 

 0 0t                                                    (4) 

 
 

1 0
r a

r a k
r



  

   
 

                     (5) 

 
 

2 0
r b

r b k
r



  

   
 

                     (6) 

 
 

 3 0

t
z h

z h k r r e
z




  
  

    
 

   (7) 

 
 

 4 0

t
z h

z h k r r e
z




  
   

     
 

   (8) 

 

)( 0rr  is the Dirac Delta operation 

with bra  0 ; 0  is the value of constant; 

)()exp( 0rrδtω   is the extra sectional heat 

present on its surface at ;hz    

4,3,2,1; ik i  are radiation factors respectively. 

 

 
Fig.1: Geometry of the thermoelastic problem of thick hollow cylinder 

 

Displacement Function and Stress relationship 

In any two-dimensional axisymmetric 

thermoelastic difficulty in nature, Navier’s 

formulas excluding structural forces are given as. 

 

  2 1
1 2 2(1 ) 0r r t r ru u e

r
   

 
        

 
,      (9) 

  21 2 2(1 ) 0z t z zu e                    (10) 

 

Where, respectively, zu , ru , and e, represent the 

axial, radial, and dilation portions. 

Goodier's thermoelastic displacing potential 

),,( tzr  and Michell's function M serve as 

representations of the displacement function in the 

cylindrical coordinate system. 

 

,r r rzu M                                            (11)                                                                                                                                                    

22(1 )z z zzu M M                      (12) 

 

Where the equation for Goodier's thermoelastic 

potential must hold                                                                                                                                                                                                                           
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



 t














1

12
                                   (13) 

 

The Michell's function, M must respond to the 

equation      

                                                                                                                                                                          

0)( 22  M                                               (14) 

 

The elements of the stresses are depicted as 

follows:     

                                                                                                                                                                                                                           

   2 22rr rr rr
z

G M M   
       
 

      (15) 

   2 22 r r
z

Gr r r M M   
        
 

 (16) 

   2 22 (2 )zz zz zz
z

G M M   
        
 

 (17) 

 22 (1 )rz rz zz
r

G M M  
       
 

    (18)  

 

where G  and υ  are the shear modulus and 

Poisson’s ratio, respectively. 

 

The boundary conditions on the traction-free 

surface stress functions are 

 

0



 hzrzhzzz                      (19) 

 

The area under study is mathematically 

formulated by the equations (1) through (19). 

 

Solution of Temperature Distribution 

When the equations (1) to (8) are subjected to the 

finite integral Marchi-Zgrablich transform 

described in [5], one obtains 

 

2

0 0 0 1 2 0

0

1
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2
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

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   (20) 

 0 0t     (21) 

 
 

3 0 0 1 2 0( , , )t

n

z h
z h k e r L k k r

z




 
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   
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 
 

4 0 0 1 2 0( , , )t

n

z h
z h k e r L k k r

z




 
   

    
 

  (23) 

 

Where   represents the transformed function of 

 , n  the transform parameter, and n  the 

characteristic equation's positive roots. 

 

0 2 0 1 0 1 0 2( , ) ( , ) ( , ) ( , )J k b Y k a J k a Y k b     

 

Next when equations (20), (22) and (23), together 

with the finite Marchi-Fasulo transformation given 

in [6], combine to produce, one obtains 

)exp(),()( *

,

*

taH
t

mnmn 









 (24) 

 * 0 0t                                                  (25) 

 

Where 
22

, mnmn a   

And 

0
0 0 1 2 0

3 4 0

( ) ( ) ( )
( , ) ( , , )

2

m m m
n m n

P h P h P z
H a r L k k r

k k r

 
 



 
   
 

 (26) 

 

Where m is the transform parameter and 
*  

stands for the Marchi-Fasulo integral transform 

of . 

Next, applying integral Laplace transform and 

taking their corresponding inverse above equation 

(24) on using (25), becomes 
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
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When the integral Marchi-Fasulo transform and 

the integral Marchi-Zgrablich transform are 

inverted and applied to the equation (27), one gets 

 

 
 
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 

3

4, 1 2 1 2 4 3
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 
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   
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Where
,

,

( , )

( )

n m
n m

n m

H a

 
 

 
,

1)1( l ,
2

)1(
l



 , 

3, lnm   and 41, )1( llnm   

 

The temperature of the cylindrical body is 

represented by the function in equation (28) at all 

times and in every point. 

 

Thermoelastic Solution 
Referring the equations (13) and (28), the solution 

for Goodier’s thermoelastic displacement potential 

  is shown as 
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 
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   

 

0 1 2( , , )nL k k r                                             (29) 

 

Similar to this, it is believed that the Michell's  

 

function solution M satisfies equation (14)'s 

governed condition as 
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Using (29) and (30) in equations (11) and (12), one obtains 
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Now using the equations (29) and (30) in equations (15) to (18), one obtains the expression for stress 

components as 
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Where unknown nmB  and nmC  can be easily 

evaluated by using boundary condition (19) to the 

equation (35) and (36). 

 

Limiting case 

As a limiting case, set        1  

Then equation (1) can rewritten as 
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              (37) 

 

Which is nothing but a classical equation of heat 

transfer in cylindrical coordinates under the 

influence of a thermal source. 

Following the integral transformation method 

stated above, one can easily find out the complete 
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solution of equation (37) in terms of temperature 

and stresses, respectively by putting 1 in 

equation (28), (31) to (36). 

 

Numerical computation 

A cylinder is supposed to have a thickness ranging 

from 1z  to 1z and a radius ranging from 

1r  to 2r for the purposes of numerical 

computation. 

Further, it is considered that thick hollow cylinder 

is made up of aluminium metal whose material 

properties are as follows: 

Thermal diffusivity,  (cm2/sec) = 0.86; the 

coefficient factor of thermal expansion, t 

(cm/cm-0C)= 25.5  10-6;Poisson ratio, 

=0.281;Shear modulus=2.7  1011, G 

(dynes/cm2) ;Modulus of Elasticity, E 

(dynes/cm2)= 6.9  1011. 

Also, fixing 86.01 k  12 k , r0 = 1.5, z0 = 0.1 

and 5.0 . 

 

Graphical representation 

 
Fig 2: Variation of dimensionless temperature function along dimensionless thickness for various values of 

fractional variables 

 

Fig. 2 shows the variation of the dimensionless 

temperature behaviour along the dimensionless 

thickness direction for a hollow cylinder with a 

linear relationship between a heat source and 

temperature. Additional sectional heating impact 

was also applied to the lower and upper surfaces 

of the cylinder. Due to sectional heating, it is clear 

from the graphical analysis that the temperature is 

something other than zero at the bottom and top 

surfaces. Throughout the thickness, it also 

increases, reaches its maximum value in the 

middle, and then begins to decrease towards the 

top for various fractional parameters. Further, it is 

seen that temperature distribution depends on the 

different values of fractional, and for higher 

values, a large variation in the curve is noted. 

 

 
Fig 3: Variation of radial stress along dimensionless thickness for various values of fractional variables 
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Fig 4: Variation of tangential stress along dimensionless thickness for various values of fractional variables 

 

Figs. 3 and 4 represent the deviations of 

dimensionless radial and tangential stress around 

the dimensional thickness direction for various 

values of fractional variables. In both cases, the 

maximum impact of the stress function occurs in 

the middle of the cylinder. Further, the non-zero 

stress reflection is due to additional sectional 

heating at the bottom and top surfaces of the 

assumed cylinder. Also, radial and tangential 

stress is found to be tensile at the bottom and top 

surfaces and seems compressive in the middle of 

the cylindrical region. 

 

 
Fig 5: Variation of axial stress along dimensionless thickness for various values of fractional variables 

 

 
Fig 6: Variation of shear stress along dimensionless thickness for various values of fractional variables 
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Figs. 5 and 6 represent the distribution of 

dimensionless axial and shear stress around the 

thickness direction for a thick hollow cylinder and 

for various values of fractional variables. Initially, 

at the thick cylinder's upper and bottom surfaces, 

the effect of the stress function is zero, which 

matches the prescribed mathematical boundary 

condition defined in equation (22). Further, the 

maximum stress response is found in the middle 

of the cylinder due to the influence of the heat 

source. Additionally, it is discovered that the 

variance in stresses in both figures is directly 

correlated with the various values of fractional 

derivatives. The variation in stresses in both 

depicts is also found to be strongly connected to 

the different fractional order derivative values. 

 

The series solution converges 

Let's examine at the manner in which the series 

solution converges. 
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This implies ),,( tzr  converges for all r >1. 

 

Conclusion 

The thick hollow cylinder with a Caputo-Fabrizio 

differential equations operator under temporal 

thermoelastic modelling is investigated 

successfully and the effects of its stress and 

temperature are analyzed. The integral 

transformation method was used to carry out an 

analytical investigation into the equations of 

temperature distribution, analysis of displacement 

function, and stress variation with additional 

sectional heat at the lower and upper surfaces of 

the cylinder. By utilizing the material properties of 

aluminium metal, all the obtained results are 

investigated numerically and plotted graphically 

for the thick cylindrical model. From the graphical 

representation, it is observed that vary in 

temperature distribution and thermal stresses 

interpolate the conventional heat conduction 

equation. I.e. Wave equation for 5.0 and 

85.0 which implies the impact of the memory 

effect as shown in numerical plotting. This 

obtained result is in good agreement with 

Povstenko [12]. The solution of the theory of 

thermoelastic diffusion is obtained for 1 , and 

its variation along thickness under assumed initial 

and boundary conditions matches standard 

plotting. Thus, the above study of a thermoelastic 

thick cylindrical body with a heat source and 

convective boundary in the context of the Caputo-

Fabrizio differential operator may be utilized for 

the design of new structural materials. Such 

material applies to many physical problems and 

involves microscopic processing. Also, the above 

study is very useful for the researcher working 

with the modelling of fractional calculus by 

considering thermoelasticity. 
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