Pipeline-Generated Continuous Integration And Deployment Method For Agile Software Development

ISSN 2063-5346 Section A-Research paper

Development
Arvind Kumar Bhardwaj, Sandeep Rangineni, Latha Thamma Reddi, Manoj Suryadevara, Krishnakumar
Sivagnanam
:Senior Software Architect, Information Technology, Capgemini, Texas, USA, ORCID: 0009-0005-9682-
6855
»Data Test Engineer, Information Technology, Pluto TV, California, USA, ORCID: 0009-0003-9623-4062
sSr Product and Portfolio Manager, Information Technology, DXC Technology, Texas, USA, ORCID:
0009-0005-6338-7972
«Staff Product Manager, Information Technology, Walmart, Arkansas, USA, ORCID: 0009-0007-8738-
2222
sSolutions Architect, Information Technology, Tech Mahindra (Americas) Inc, Virginia, USA, ORCID:
0009-0004-2843-182X
ABSTRACT

E Pipeline-Generated Continuous Integration And Deployment Method For Agile Software

Because of this, DevOps and Agile concepts were established to ensure that applications can be delivered
rapidly and reliably by fostering tight collaboration between developers and infrastructure engineers. The
pipeline strategy has helped increase the effectiveness of initiatives. New features are added to the system
with each sprint delivery, which is what agile approaches represent. These procedures might have fully
formed features or they could have flaws or errors that have an effect on the delivery. This article presents
a pipeline strategy for solving delivery issues, which speeds up the delivery process, simplifies testing,
and enhances benchmarking. It increases stability and deliverability, reduces system disruption, and
integrates numerous test phases. Because it is written in Bash, an interpreted language, this tool may be
easily integrated with other systems. We show the value that our solution presently generates based on
experimental data. This solution offers a fast and easy method for creating, managing, and automating
automated pipelines for Cl and CD projects based on the Agile methodology. Standard CI/CD processes
may be built upon the suggested solution, stores reusable Docker layers in a cache, and uses Helm to
deploy highly available outputs to a Kubernetes cluster. Altering the solution's fundamental concepts and
bringing it to more platforms (windows) will be discussed later.

Keywords : Version Management, Agile, Containerization, Git, Continuous Integration, Continuous
Delivery, Configuration Management

1.0 Introduction

The needs of current enterprises cannot be met by the methods of software development of the past. The
agile technique appeals to software development firms because it facilitates a more responsive, effective,
and quick software development life cycle. Experts and companies alike are so interested in developing
and automating a unified solution for CI, CD, and CDT (“Continuous Integration, Continuous Delivery,
and Continuous Deployment”).A product or service may be brought to market more quickly by using
rapid development cycles, often known as iterations. That is to say, instead of tackling one huge project at
a time, agile methods break down the tasks into smaller, more manageable chunks. Among the numerous
advantages of the CI technique, the removal of maximum iterations per implementation and the decreased
chance of unsuccessful implementations stand out. Businesses are more likely to invest in CD because it
helps them get their products to market faster, improves quality, makes customers happier, help them
avoid legal trouble, and increases efficiency and productivity. The bulk of software and mobile app
development is currently hosted on infrastructure as a service (laaS), making Cl, CD, and CDT
unquestionably important in the cloud [3].It is sometimes hard to revert to a previous version of a system
after it has been deployed or after a migration has been completed, even if the system has been carefully

5590
Eur. Chem. Bull. 2023, 12(Special Issue 7), 5590-5603

Pipeline-Generated Continuous Integration And Deployment Method For Agile Software Development

ISSN 2063-5346 Section A-Research paper

developed [4]. The problem may be easily addressed by changing the size of the necessary systems due to
the increased emphasis on achieving delivery deadlines through the usage of agile methods. There is also
the possibility of including rollback into the pipeline, which would cause the system to revert to a previous
state if the monitoring thresholds or basic checks fail [6].This article presents a blueprint for establishing
CDT pipelines that are both automated and continuously integrated. It explains why it takes time and
careful engineering to create delivery pipelines that are both flexible and high-quality [7].The remaining
sections of the paper are organized as shown above.

2.0 REVIEW OF LITERATURE

To address product and business difficulties, the IT sector has increasingly adopted the CI/CDT/CD
methodology for application delivery and deployment. Using Git-stored declarative configuration files,
Argo CD can automatically deploy software applications to Kubernetes. This makes it possible for Git to
be used for version control and auditing of the configuration. As per Dr.Naveen Prasadula Cluster-based
tool whose primary function is to monitor an off-site Git repository and deploy new Kubernetes manifests
as they become available. Because it integrates so many tools into a single package, it eliminates the need
to adopt and set up separate programs to implement the various CI/CD best practices. This article
addresses every facet of standard Agile organizations by proposing a solution that incorporates all of these
features: a pipeline generator, version control, continuous integration, and continuous deployment.

2.1 Basic ldeas

ClI allows for swift collaboration on a single project by automating the build and testing processes.
Another benefit of Cl is that it shortens and increases the frequency of software release cycles [14].

2.2 Constant Distribution (CD)

In software engineering, the term "continuous delivery"” refers to a methodology in which software is
developed, tested, and released at regular intervals. The speed and consistency of the cycle are guaranteed
by the extensive use of automation throughout. It uses a series of procedures to deploy and deliver
software to a staging area that mimics production [14].As an alternative to manual installation, an op-prem
cloud solution might automatically deploy the packed program. Continuous Deployment refers to the
procedure through which application updates are automatically sent out to live servers [20, 22].

2.3 CI/CD Pipeline

GitLab reduces development expenses and security concerns while speeding up product delivery from
weeks to minutes. Some of Gitlab's tools are discussed below; using them makes this solution readily
accessible and easy to use in any project or business [23].

2.4 Archiving and Repository Management

To keep track of and organize modifications made to software, a process known as "version control™ or
"source control™ is used. Software engineers use version control systems, or VCSs, to keep track of past
and present iterations of their code. Git is the most widely used VCS that support CI/CD workflows. A
repository is a centralized database that stores and maintains large amounts of information in an orderly
manner.

2.5 Robotic Tests

Unit, functional, and performance testing are all a part of a well-orchestrated test automation framework.
A dependable code base, quicker reaction times, and less complicated decision-making are all advantages

5591
Eur. Chem. Bull. 2023, 12(Special Issue 7), 5590-5603

Pipeline-Generated Continuous Integration And Deployment Method For Agile Software Development

ISSN 2063-5346 Section A-Research paper

of the continuous testing method. The suggested solution [32] offers the possibility of adding automation
testing.

2.6 Methods of Deployment

Helm, which is built on Kubernetes, is the first application package management [34]. The application's
architecture may be described using helm-charts, and it can be controlled using simple commands.

2.7 New Solution Structure Proposed

The primary phases of the proposed solution's pipeline are shown in a straightforward UML schematic
(Figure 1) below.

latest released code version: 1.3.5 ?

‘patch’' changes (fixes, tests) ’
merged into master

¥

‘ mark version as release candidate:
1.3.5-rc

| build |
v

[test |
v

mark version as release:
7 B JaAl o

| deploy |

¥
(-
The suggested solution is shown in Figure 1 as a UML diagram.

Table 1 lists the available flows, and Figure 2 provides a more in-depth description of the pipeline
generator's UML Diagram.

Table 1. Four content elements of the seminar

Hemen Coment (Fxemplificatory)

Sstavrable development peals (8Os, [71]

The eculogical ootprist [77]

The conarpt of plaswtary toundanes |

Comsumpixmapecific Swveetical werk [74]

Challengys, copang stratrgies. and sipportive tacsm mlatnd B X

I Immchuction theveetsal hackpmmnd on and amsral imacepts of S

Setting and wallling meditaten

Bodyscan

Mandul commursoatue

Bevath clwery stan

Yo

Micropherumesedagical sierriew Snteane
(\u‘;.- I""ln‘!\‘h.r

(Ohaabfative ot analyae

L Irtrospection and msendfulness traming

Methododogncal know ledge selated to the collection and anabyse
ol mtrspectinve dala

Mandfulness jracumw

Motivational intercwswing |

Practices bromn dewp sasdogy [4]

Vanety of am buideg cvrOme. DCiading cormetatn ¢+ Soade
of triads puctivedy tove o e people shanng)

L Awaneess and strngthening of perwonal tsourons

5592
Eur. Chem. Bull. 2023, 12(Special Issue 7), 5590-5603

Pipeline-Generated Continuous Integration And Deployment Method For Agile Software Development

ISSN 2063-5346 Section A-Research paper

[1atest code version: 1.3.4 | : : latest helm version: 0.5.0 |

create a pipeline lock for versioning |

s
| docker build | | tag commit: 0.5 1-helm-rc |

/ Usles Univ@rsal Helm ”\‘N
~

custom jobs (e.g tests) | _

l ktuc ‘_A—"'—»_J'a_ls.e
e

| promote docker image | | download universal chart | | helm lint each valuesfile with the local chart |
l | release the pipeline lock for versioning | l l
| tag commit: 1.4.0 | | helm lint each valuesfile with the universal chart | | tag commit: 0.5 1-helm |

| create a pipeline lock for deploy |

!

| update app version in Chart.yaml |

Unes Univerrsal Helm chart? l

Lrie T falne
BN
| update Helm chart version in Chartyaml! |

| deploy @ach valuesfile with the universal chart | l

| deploy each valuesfile with the local chart |

| release the pipeline lock for deploy |
-

The solution is shown in a detailed UML diagram (Figure 2).

Detailed descriptions and explanations of the many proposed solution flows are provided below. The
proposed application is a set of Bash scripts, one for each feasible procedure.

2.8 Synthesis of Pipelines

The pipeline generator can scan the git repositories for build and deployment files, and then generate the
corresponding pipeline tasks. The.ci/custom.yml file stands alone; it may store any custom tasks and

5593
Eur. Chem. Bull. 2023, 12(Special Issue 7), 5590-5603

Pipeline-Generated Continuous Integration And Deployment Method For Agile Software Development

ISSN 2063-5346 Section A-Research paper

survives even after the pipeline is regenerated. These tasks form the backbone of any pipeline, since they
allow for centralized management of code revisions, builds, and releases. While projects have many
similarities, there are certain things that must be done in each setting. It's possible that your project calls
for either running a comprehensive set of tests or uploading a file to an AWS S3 bucket. The framework's
extensibility was ensured by using a custom pipeline extension mechanism. Adding custom tasks to the
pipeline requires editing a file known as.ci/custom.yml.

For an example of the Bash script used to regenerate the pipeline, see Figure 3 below.

1- add_templates_docker() {

2 info "copy job templates: DOCKER"

3 cat Sdocker_templates_dir/jobs/docker.yml >> $repo_ci_dir/build.yml
4 }

5

6 - add_jobs_docker() {

7 info "add jobs: Docker"

8

9 dockerfiles=$(find * -maxdepth @ -iname Dockerfile*)

10 if [[! -n Sdockerfiles]]; then

11 warn "skip appending the jobs for Docker actions: no Dockerfile(s) found in the root of the project”
12 return

13 fi

14

15 for dockerfile in $dockerfiles; do

16 debug " - Sdockerfile”

17 component_suffix«$(sed -E "s/Dockerfile//g" <<<"$dockerfile")

18 cat <<EOF >> Srepo_ci_dir/build.yml

19

20 build Sdockerfile:

21 extends: .docker_build

22 variables:

23 COMPONENT _SUFFIX: "Scomponent_suffix"
24

25 promote Sdockerfile:

26 extends: .docker_promote

27 variables:

28 COMPONENT _SUFFIX: "Scomponent_suffix"
29

30 0

31 done

32 }

33

Code Sample for a Pipeline Generator (Figure 3).
2.9 Versioning

The versioning pipeline is the first to execute once a git commit is merged into the master branch. Pipeline
execution is blocked until versioning is complete because of the lock created by this pipeline. The pipeline
versioning lock will be unlocked if the commit is a release candidate and includes deployable
modifications. On top of that, test suites are run, and if they all pass, the commit is promoted to the stable
branch.

5594
Eur. Chem. Bull. 2023, 12(Special Issue 7), 5590-5603

Pipeline-Generated Continuous Integration And Deployment Method For Agile Software Development

ISSN 2063-5346 Section A-Research paper

Figure 4 depicts the whole procedure, whereas Figure 5 displays a fragment of the Bash script used for
versioning.

latest code version: 1.4.0 b}?

-

create a pipeline lock for versioning H|

, v N ’
(tag commit: 1.4.0-rc |
, “ v ’ .
[release the pipeline lock for versioning |
. / ‘+) i

L build/test |
) ¥ .

| tag commit: 1.4.0]

h ®

The versioning process is shown in Figure 4.

.

1~ function release() {

2 local component_suffix=$1

3

4 local commit_sha=SCI_COMMIT_SHA

5

6 info "mark the commit as a release by creating an annotated tag with the version number and the suffix
$suffix (e.g. 1.2.3, 1.2.3-helm)"

7

8 # Get the version number from the file generated in the pipeline's 'release-candidate' job

9 rcversion=$(cat .version-rc$component_suffix)

10 info "use the version number of the release candidate: $rc_version”
1

12 # Create and push a new git tag

13 semtag -version=$rc_version -git-tag -push -suffix="$component_suffix"

14

15 info "new tag: Src_version”

16

17 # Generate a full dev-changelog for releases only, based on git history (since the first existing git
tag)

18 generate_changelog "$component_suffix"

19 }

Figure 5 a fragment of the Bash script

5595
Eur. Chem. Bull. 2023, 12(Special Issue 7), 5590-5603

Pipeline-Generated Continuous Integration And Deployment Method For Agile Software Development

ISSN 2063-5346 Section A-Research paper

The CI component of this solution is shown by the command shown in Figure 8 below, which is taken
from the build Bash script.

The section describes the Docker caching layers, an additional feature of Docker images. The Dockerfile
defines the collection of instructions and actions that make up each layer of a Docker image. Docker's
support for "layers" makes it possible to break down a complex job into manageable chunks, so that just
the layer corresponding to a given change in the code or program has to be updated. The proposed
technique searches in order to cache the especially uncached levels and puts a premium on caching all the
layers in order to speed up the construction process. By contrasting the times required to generate the
same image with and without cache enabled, Figure 9 provides a thorough description of Docker caching.

busd
Dockerfile
target
busybox_ubun
budd

Dockerfile
1arget docker

code release
candidate

promole
Dockerfile
target
busybax,_ubun
|1]

promote
Dockarfile
target dockes

promoie

Dockerfile
target helm
promote
sind ta lr:::iko
Dockerfile o
target halm
build promote
Dockerfile Dockarfile
target Kanko target mutex
busd
Dockerfile
target mutox promote
bl Dockerfile
Dockerfile 1arget version
target version
Figure 6: Flow of a pipeline schematic.
version - acquire Jock code refease candidate version - release lock
pra-oersan Varuon \ post-versan
butld Dockerfile target busybox_ubunty B\ promaote Dockerfle target busybox_ubunty
Dand pubdiah
build Dockerfile target docker LN\ promote Dockerfile target docker
Lot putish
bulld Dockerfile target helm LN @ promote Deckerfide target helm
[) putiish
build Dockerfile target kaniko L\ promote Dockerfile target karsko
) Dutieh
bulld Dockerfile tarpet mutex proenote Deckerfile target mutex
buid putiish
build Dockertile target vorsion promote Dockerfile target version
i pubiah

Dependencies on flows in a pipeline diagram are shown in Figure 7.

5596
Eur. Chem. Bull. 2023, 12(Special Issue 7), 5590-5603

Pipeline-Generated Continuous Integration And Deployment Method For Agile Software Development

ISSN 2063-5346

Section A-Research paper

2.10 Deploy

The CD pipeline is discussed in this section in detail. It checks for the presence of files containing object
definitions and values.

This method lends itself well to customization on a broad scale. The produced code is readily adaptable to
the needs of many external entities, making its usage a breeze.

The full automated procedure discussed here is shown in flowchart form in Figure 10.

Figure 11 clearly depicts the deploy pipeline of the proposed solution, which includes the helm
installation/upgrade procedure.

N -

WO e NN oYW, & W

1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
i1
32
3

34

36

= build_image() {

Build only a Dockerfile that has the suffix Scomponent_suffix (e.g. 1f Scomponent_suffix == "-gm"
then build the Dockerfile Dockerfile-api’)
component_suffix="$1"

if [[-n "$component_suffix"]]; then
file_with_docker_tags="$file_with_docker_tagsScomponent_suffix"
fl

Set two togs for the built imoge: an unmique tag and o stable tog

Add the generated tog names to the file used for promoting images

Set an umque tag that contains the git branch nome and the git commit hash
tag_unique="$(echo rc-SCI_COMMIT_REF_NAME-SCI_COMMIT_SHAScomponent_suffix | sed 's/--/-/g')"
debug "unique tag for the image: $tag_unique”

echo "$tag_unique” >> "$file_with_docker_tags"
docker_image_unique="$docker_repository_url:S$tag_unique”

#2 Set a stable tag with the a1t branch name

tag="$(echo rc-SCI_COMMIT_REF_NAMEScomponent_suffix | sed 's/--/-/g')"
debug "stable tag for the image: $tag"

echo "S$tag" > "$file_with_docker_tags"
docker_image="$docker_repository_url:$tag"

Use this Dockerfile

dockerfile="DockerfileScomponent _suffix”

set_sonar_args “$dockerfile”

add_ecr_credentials_for_kaniko

Build the imoge

info "build image from Sdockerfile"

set -x # enable the mode of the shell where all executed commands are printed to the terminal; this 1s
used for printing the generated command, which 1s useful for debugging

time /kaniko/executor \
--cache=true \

Image construction as seen in Figure 8.

5597

Eur. Chem. Bull. 2023, 12(Special Issue 7), 5590-5603

Pipeline-Generated Continuous Integration And Deployment Method For Agile Software Development

ISSN 2063-5346 Section A-Research paper

I+] Building 29.5s (10/18) FINISHED

=> |internal] load build definition from Dockerfile 0.0s
=> =» transferring dockerfile: 1478 005
= [internal] load .dockerignore 0.8s
=> =» transferring context: 28 8.0
=> [internal] load setadata for docker.io/library/node:ll 2.4s
=> [1/5] FAON docker.io/\ibrary/node:8@sha256: a6810174805088¢03eb21abcBe 16805970188a287474167ab5531 c953aac34d! 25.9s
=> =» resolve docker, lo/library/node: S@sha2S6: a68101748850800932b21a6¢02116829761082287a74167ab593 1 cF53aac34dr 8.8s
=> =» sha256:394af50Zaelf42b7acai0c4c0BeTe99591e920c 1875602 fE5284dd620592318¢ 2.21kB / 2.21k8 0.8s
=> =» 5ha256:58c37a0369c7 fdcecsd75389125ea0c0fb23f50efaeda7AT0726cc 9452804026 7,76kE / 7.76k8 0.0s
=> =» shal56:b4131062581dadb1169c4304410480445678801 1325120066929 2cB2b5060 9.75M8 / 9.75M8 1.8¢
=> =» shal56:0d62337a2062607 fA8a5dc3alc07639360458ee78902ca80459c832719012112 4.99M8 / 4,096 L.3s
=> =» shal56:007bcf5901dfar93 fabb2cdcoleshibeefI1500b092¢chfd1a020eefedafBelf2 43.17M8 / 43.10N8 6.5s
=> =» sha2%6:403697a3e152¢7a38ddb0175a90ed20ac97d780421c35949f FBRCAOTaTdde596 48,0248 / 48.02M8 11.05
w» =» shal56:8179cbBc173391719c763581cefbBe37Tc@1604¢7fAbT472665340279470363c 202,238 / 202,23N8 19.8s
»> »» shal56:6813afc532cf2202a043712c4020¢ce8714262cb701dF 194002 f260806b1d4152 4. 19%B / 4.19kB .93
#> =» extracting sha256:087bci5901d7aT93fabb2cAct1Te86bcef315000092chfd1a92%cefodafBedf2 1.3s
=> =» sha256:8935cecal89361365028758478150ecT fefcfSean7284b67689e49d305bedd96 19.37M8 / 19.37M8 11.0s
=> =» extrocting shal256:48369723¢152¢7030ddb9175290cd2dacd7d780471c359491F8Rcd67a7d4e596 1.6s
=> =» 3ha256:dfbca3bbe 8714791 fabe7246662913c954d5¢c409¢2¢cab896bT01ca267 fhada5 1,40N8 / 1.40MB 12.63
=> =» gha256:5195d00d188417d73694822142887c 140873 ¢03a621 c18bce71982544314450 2958 / 2958 11.5%
=> =» gxtrocting shoZ56:0179¢h8c173391719¢763581cefbSe37TcR160417140747066534%673470363¢ 4.9
=> => extracting sha256:8935¢ecal89361365028758418150ec7 el cf5enaT284b67689e49d3b50ed996 L
=> [internal] load build context 0.1s
=> =» transferring context: 34,12kE 0.8s
=> {2/5] WORKDIR /app b.1s
=> [3/5] COPY package.json /app ¢.0s
=> [4/5] RUN npm Install 2.5s
=> [5/5) COPY . /app 0.
=> exporting to lmage 0.1s
=> =» exporting layers 0.1s
> w» writing image sha2$6:6c43a2767fb3862647a2e36d09d931c29F390344280536574db809943040d f5d 0.0s
= =» nasing to docker.io/library/test_articol 8.8:
[+] Building @.3s (19/18) FINISHED

=> linternol] load build definition from Dockerfile 005
=> =» transferring dockerfile: 368 0.8s
=> |internal] load .dockerignore LN 5
=> =» transferring context: 28 8.08s
=> [internal] load wetadata for docker.i0/library/node:B 8.2
=> [internal] lcad build context 2.8s
=> =» tronsferring context: 4.28k8 8.0
=> [1/5] FROM docker, lo/\ibrary/node:8§sha2ss: ab810174805080003eb21abc0e1682976108a207a74167a05931 c053aac34d ! .05
=> CACHED [2/5] WORKDIR /app 2.0s
=> CACHED [3/5] COPY package.jsan /app 8.0s
=> CACHED [4/5] RUN mpm install 0.0s
=> CACHED [S/5) COPY , /app 0,05
=> exporting to image e.0s
»> = exporting layers 0.0s
»> w» writing Image sha2S56:6c43a32767fo386a647a2e36d69d931¢29f390344a805369744b009943b4bd f5d 8.0s

=> = nasing to docker,io/library/test_articol

N

Ci PIPELINE CD PIPELINE

-
N "
LM =13
=

Fig. 9. A dataset of Docker-cached layers.

- | ; DEFLOYMENT
» ek DONE

& i e
N S

A schematic representation of the suggested solution is shown in Figure 10.

5598
Eur. Chem. Bull. 2023, 12(Special Issue 7), 5590-5603

Pipeline-Generated Continuous Integration And Deployment Method For Agile Software Development

ISSN 2063-5346 Section A-Research paper
1 # Install/upgrade a Helm chart
2 helm upgrade --install \
3 "$helm_release_name" \
4 $chart_yml_dir" \
) --namespace="$k8s_namespace" \
6 --create-namespace \
7 values “Svalues_file" \
8 set image.tag="Stag" \
9 set annotations, "app\.gitlab\.com/app"="$CI_PROJECT_PATH_SLUG" \
10 set annotations."app\.gitlab\.com/env"="SCI_ENVIRONMENT _SLUG" \
11 ${default_args} \
12 ${custom_args} &&
13 deploy_status="upgrade_success" deploy_status="upgrade_fail"
14
15 set +x ¥ disoble the mode of the shell where all executed commands are printed to the terming
16
17 debug "deploy status of Shelm_release_name: Sdeploy_status”
18
19 if [["$deploy_status" == "upgrade_fail"]]; then
20 fatal "deployment of Shelm_release_name has failed"
2 fi
22
23 if [[! -z "SCNX_DEPLOY_DRY_RUN_ENABLED" 1] ;
24 then
25 info “dry-run deployment of Shelm_release_name has been successful”
26 else
27 info “deployment of Shelm_release_name has been successful’
28 fi
29
30 ¢ Show the Helm release ofter install/upgrode
31 list_release $helm_release_name
2 }

The update or installation of Helm, seen in Figure 11.

2.11 Experimental Findings and Analysis of the Effects of the Application
Impact Study on an Application

Second, each pipeline is distinct and basic, with no unnecessary or extraneous components, ensuring that
code duplication is kept to a minimum across repositories.

The overall quality of information systems is enhanced via management transformation [36]. Operations
and maintenance staff now have higher levels of professional competence. The change of O&M
management, driven by technological advancements.

3.0 OUTCOMES OF EXPERIMENTS

The abstract objects in GitLab known as "runners" carry out the action of running a pipeline task. The first
inference that can be drawn from this result is that the runners are SPOT instances, which are reusable and
operate on AWS's spare capacity and hence cost far less than on-demand instances. About 80% of the
calculated expenditures for each activated pipeline are avoided thanks to this suggested solution feature.lt
is also important to highlight the benefit brought about by the suggested solution, which is connected to

5599
Eur. Chem. Bull. 2023, 12(Special Issue 7), 5590-5603

Pipeline-Generated Continuous Integration And Deployment Method For Agile Software Development

ISSN 2063-5346 Section A-Research paper

the construction stage of the pipeline. By reusing existing layers wherever feasible, Docker-cache-layer
integration speeds up the build process and reduces the amount of data sent. When a complete build phase
is started again, the cached layers will be used instead of starting from scratch. This whole procedure
lengthens the pipeline, cutting expenses while adjusting the effect on production.

Figure 12 displays the timespan of tasks from the sample pipeline shown in Figures 6 and 7. It
demonstrates that 16 tasks (six Docker builds, six Docker promotes, and four versions) take a total of 157
seconds to complete throughout the full pipeline.

@ ¥ jobs for master in 2 minutes and 37 seconds (Quewed for 3 minutes and 25 seconda)
< bdlRedlf

13 No relsted merge requests found

Poeine Noeos Jobs 168 Tests 0

Status Job Stage Name Duration

(v) passeg | #754087 post-putdish CO0e THiease & 00:00:10
o ¥ mastar = b53000% 87 morhe-ago
(¥) passed 754081 puiblish pramote Dackerfile targut busybox_ ® 00:00:10

' ¥ master < beE30e0M 07 mombs ago
(=) passeg #T5408(prblish pramote Dockertile target ywesion ® 00:00:11
o ¥ mastar < baI0e0t 12 7 months ago

(2 passed #5409 prabilisn pramaote Dockartile target mutes 5 00:00:1

V master < bo30e0 Y " 7 mombs ago

Time and steps in the pipeline diagram, seen in Figure 12.

Without the suggested solution's integration, manually triggering the tasks likewise took roughly 180
seconds. Time differences between the three pipeline options are seen in Figure 13.

Cli pipeline
3.000 B Automated
Bl Manual
0 Gatad
2.000
E
1.000
0
0 2

pipoline type
Number of seconds depicting time disparity across pipeline types, seen in Figure 13.

5600
Eur. Chem. Bull. 2023, 12(Special Issue 7), 5590-5603

Pipeline-Generated Continuous Integration And Deployment Method For Agile Software Development

ISSN 2063-5346 Section A-Research paper

The operating expenses of the pipelines are the focus of the brief discussion that follows as a direct
consequence of the comparison. Collectively, this may help reduce CI/CD infrastructure expenses for
businesses by as much as 80-85 percent compared to using a manual pipeline. When compared to the
suggested method, the savings percentage for the third kind of pipeline—which can also perform
processes in parallel but not on spot instances—is substantially lower, at roughly 10-15%.

Cl pipeline
I Automated
B Manual
W Gitlab
pipeline-types
0 10 20 30 40 50

costs &
Figure 14 shows price tag on constructing a pipeline.

The benefit of this approach is realized in full with the deployment phase, which is realized through Helm.
By acting as a wrapper, this reduces the overhead of maintaining configuration and manifest files for
microservices, hence shortening the time of the automated workflow. The deployment process is risk-free,
secure, and quick because of these factors.The build phase of the continuous integration pipeline is
described in the preceding section, and the outcomes of the whole flow of this suggested solution are
shown in the section that follows.The benefits of this technique are shown in these tests because of the
hardware implementation it demands. Cloud instances (EC2) hosted on Amazon Web Services' Elastic
Kubernetes Services platform hosted the complete system. Once everything was integrated, we kicked off
the whole pipeline of our designed solution to roll up a RabbitMQ Helm Chart with one master pod and
two slave pods.

A cluster of RabbitMQ that is both reliable and extensible. Each pod is launched on its own EC2 instance
in Figure 15 to reduce the likelihood of service disruptions.

TS ME NOE NOVTNATED NODE ~ READINESS GATES
M WD dp-0-20-L1051,us-easteD. comute, Internal e ane
A LIS LpelA1-L-09, us-easted. compute, Intemnal ey ane
on 00060 1pelAeD-103-280,Us-tast-d. copute. ntemal - o> ane
Figure 15 shows the suggested solution's deployment of RabbitMQ

WE R STATUS i
d U1 Ry
el 11 RJ, g ¢

! !

1 Ruaning

P
f
!

5601
Eur. Chem. Bull. 2023, 12(Special Issue 7), 5590-5603

Pipeline-Generated Continuous Integration And Deployment Method For Agile Software Development

ISSN 2063-5346 Section A-Research paper

4.0 CONCLUSION

The time it takes to create new software may be cut in half, and its quality can be increased, with the aid
of continuous integration solutions. The machine takes care of the double integration, freeing up the
developers to concentrate on the software's architecture. Testers may be put through their paces with the
help of continuous, fast feedback. The continuous integration delivery system is a major step forward in
the development of fully automated systems. It aids in the creation of higher-quality software systems and
the implementation of lean processes for continuous improvement, as well as in the maturation of software
projects and the enhancement of software service levels. The system is built on Agile principles, which are
in charge of the features of apps being automatically integrated, tested, and delivered.

4.1 Limitations, Discussion, besides Future Research

There was a dramatic shift in how organizations and other entities released and improved their goods over
the internet after adopting the practices of continuous integration and continuous deployment [31]. These
integrations can be constructed and distributed quickly, without downtime or bottlenecks, thanks to the
capabilities of cloud platforms [39], making this a tool with minimal drawbacks.The first possible
enhancement would be to rewrite the Bash scripts that comprise this solution into Golang [41], making it
cross-platform [42]. Golang would also reduce development and compilation times [43]. The ability to
develop and release software on many platforms (Windows, Arm, etc.) is another goal for the future. The
suggested approach identified potential issues that might arise as a result of CI/CD/CDD practices, which
presents some opportunities for further study.

References

1. Fogelstrom, N.D.; Gorschek, T.; Svahnberg, M.; Olsson, P. The impact of agile principles on
market-driven software product development. J. Softw. Maint. Evol. Res. Pract. 2010, 22, 53-80.
[CrossRef]

2. Weaveworks. Building Continuous Delivery Pipelines. Available online:
https://www.weave.works/assets/images/blta80840 30436bce24/CICD_eBook Web.pdf (accessed
on 10 January 2022).

3. Moreira, M. The Agile Enterprise: Building and Running Agile Organizations, 1st ed.; Apress:
Berkeley, CA, USA, 2017.

a. Singh, S.; Sharma, R.M. Handbook of Research on the IoT, Cloud Computing, and
Wireless Network Optimization (Advances in Wireless Technologies and
Telecommunication), 1st ed.; IGI Global Hershey: Pennsylvania, PA, USA, 2019.

4. Losana, P.; Castro, J.W.; Ferre, X.; Villalba-Mora, E.; Acufia, S.T. A Systematic Mapping Study on
Integration Proposals of the Personas Technique in Agile Methodologies. Sensors 2021, 21, 6298.
[CrossRef] [PubMed]

5. Fitzgerald, B.; Stol, K.-J. Continuous Software Engineering: A Roadmap and Agenda. J. Syst.
Softw. 2017, 123, 176-189. [CrossRef]

6. Awscloud. A Roadmap to Continuous Delivery Pipeline Maturity. Available online:
https://pages.awscloud.com/rs/112-TZM-

7. Liu, D.; Zhao, L. The Research and Implementation of Cloud Computing Platform Based on
Docker. In Proceedings of the 11th International Computer Conference on Wavelet Actiev Media
Technology and Information Processing (ICCWAMTIP), Chengdu, China, 19-21 December 2014.

a. Xia, C.; Zhang, Y.; Wang, L.; Coleman, S.; Liu, Y. Microservice-based cloud robotics
system for intelligent space. Robot. Auton. Syst. 2018, 110, 139-150. [CrossRef]

5602
Eur. Chem. Bull. 2023, 12(Special Issue 7), 5590-5603

Pipeline-Generated Continuous Integration And Deployment Method For Agile Software Development

ISSN 2063-5346

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

Section A-Research paper

Dr.Naveen Prasadula A Review of Literature on Pipeline-Generated Continuous Integration And
Deployment Method For Agile Software Development
Gorski, T. Towards Continuous Deployment for Blockchain. Appl. Sci. 2021, 11, 11745.
[CrossRef]
Chacon, S.; Straub, B. Pro Git, 2nd ed.; Apress: Berkeley, CA, USA, 2014.
Zolkifli, N.N.; Ngah, A.; Deraman, A. Version Control System: A Review. Procedia Comput. Sci.
2018, 135, 408-415. [CrossRef]
Burns, B.; Grant, B.; Oppenheimer, D.; Brewer, E.; Wilkes, J. Borg, omega and kubernetes.
Commun. ACM 2016, 14, 70-93.
Gitlab Inc. Build with Kaniko. Available online:
https://docs.gitlab.com/ee/ci/docker/using_kaniko.html (accessed on 12 March 2022).
Jamal, M.; Joel, C. A Kubernetes CI/CD Pipeline with Asylo as a Trusted Execution Environment
Abstraction Framework. In Proceedings of the 2021 IEEE 11th Annual Computing and
Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 27-30 January 2021.
Reis, D.; Piedade, B.; Correia, F.F.; Dias, J.P.; Aguiar, A. Developing Docker and Docker-Compose
Specifications: A Developers’ Survey. IEEE Access 2022, 10, 2318-2329. [CrossRef]
Bhimani, J.; Yang, Z.; Mi, N.; Yang, J.; Xu, Q.; Awasthi, M.; Pandurangan, R.; Balakrishnan, V.
Docker Container Scheduler for 1/0O Intensive Applications Running on NVMe SSDs. IEEE Trans.
Multi-Scale Comput. Syst. 2018, 4, 313-326. [CrossRef]
Packard, M.; Stubbs, J.; Drake, J.; Garcia, C. Real-World, Self-Hosted Kubernetes Experience. In
Proceedings of the Practice and Experience in Advanced Research Computing (PEARC 2021),
Boston, MA, USA, 18-22 July 2021.
Dr.Naveen Prasadula A Review of Literature on Pipeline-Generated Continuous Integration And
Deployment Method For Agile Software Development
Karamitsos, I.; Albarhami, S.; Apostolopoulos, C. Applying DevOps Practices of Continuous
Automation for Machine Learning.
Information 2020, 11, 363. [CrossRef]
Zhou, Y.; Ou, Z.; Li, J. Automated Deployment of Continuous Integration Based on Jenkins.
Comput. Digit. Eng. 2016, 44, 267-270.
a. Buchanan, S.; Rangama, J.; Bellavance, N. Helm Charts for Azure Kubernetes Service. In
Introducing Azure Kubernetes Service; Apress: Berkeley, CA, USA, 2019.
b. Fedak, V. What is Helm and Why You Should Love 1t? 2018. Available online:
https://hackernoon.com/what-is-helm-and-why- you-should-love-it-74bf3d0Oaafc (accessed
on 14 March 2022).

5603

Eur. Chem. Bull. 2023, 12(Special Issue 7), 5590-5603

