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Abstract: 

Based on a series of previous experiments, there is a natural relationship between the molecular 

structures of various chemicals and drugs and their biomedical and pharmacological 

characteristics. Topological Indices are numerical descriptors that are computed for various 

molecular structures. These topological indices deal with many properties of molecular structure. 

A dendrimer is a nanometer-scale star-shaped macromolecule. Three components define 

dendrimers: a central core, an interior dendritic structure (branches), and an exterior surface. 

Medical and pharmaceutical fields have used topological indices that predict the biological 

features of new chemical compounds and drugs by calculating weighted entropies for molecular 

structures. In this paper, we compute the First (a, b) K.A. Index, Sombor Index, Modified Sombor 

Index, Reduced Sombor Index, Reduced modified Sombor Index, Reduced 1st (a, b) K.A. 

Index, Reduced 2nd (a, b) K.A. Index for Triazine Based Dendrimer (TBD− Gn). Furthermore, we 

determine weighted entropies of 𝑇𝐵𝐷 − 𝐺𝑛 by computing the topological properties such as the 1st 

Zagreb index, 2nd Zagreb index, Modified 2nd Zagreb index, Augmented Zagreb Index, Hyper 

Zagreb 2nd Index, Redefined 1st Zagreb Index, Redefined 2nd Zagreb Index and Redefined 3rd 

Zagreb Index. 

Keywords: Entropy, Graph indices, weighted entropies of TBD − Gn , Dendrimer, Entropy 

of TBD − Gn, Triazine Based Dendrimer  

 

Introduction: 

Graph theory is an important branch of mathematics. This field deals with graphs in different 

fields like mathematics and computer science. There is a non-empty set in the field of graph 

theory, which is the collection of apexes and controls called graph G. It is signified as 𝐺 (𝑉, 𝐸), 
where V denotes the vertex set and E denotes the edge set. Graph theory was first introduced in 

1735 when a bridge problem was solved by a mathematician named Leonhard Euler [1]. To find 

the degree of vertices, we count the number of controls/edges connected through that vertex. To 

make modern communication and technological processes possible, we can use graphs 

underlying many computer programs. They donate to the development of thinking, both abstract 

and logical. For example, in a famous game like connecting the dots on a piece of paper to make 

a figure, a cat, or a dog, those connections are also graphs. Chemical graph theory is a field of 

graph theory that is essential. In Chemical graph theory, an atomic structure is represented by a 

graph where edges represent the bonding and vertices represent the atoms. The whole graph can 

be represented in this field by just one quantity, a chemical index, and chemical indexes are often 

related to chemical properties. An index's minimum or maximum values for any given graph 

topology are particularly significant. Many of these chemical indices are defined in terms of 
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(topological) vertex degrees, distances between the vertices, or the spectra of matrices describing 

the graph (like the adjacency matrix) as in spectral graph theory [2]. 

 
Figure 1: Chemical Compound and Chemical Structure. 

 

Mathematical chemistry is a topological branch of chemical graph theory in which we use graph 

theory to model chemical events mathematically [3]. In recent years, chemical graph theory has 

fascinated increasing my research interest. In 1988, around 500 articles were produced annually 

by several researchers, each on chemical graph theory. In this area, many monographs have been 

written, and it also contains two volumes of a comprehensive text name, Chemical Graph Theory 

by Trinajstic that summarized the field up to the mid-1980s [4]. Proponents of the theory say that 

the properties of a chemical graph (i.e., the theoretical representation of a molecule graph) 

provide valuable insights into chemical phenomena. Some say that graphs play only a fringe role 

in chemical research [5]. In the mid-nineteenth century, theoretical chemists found useful 

information about many aspects of organic substances with molecular structure. Examining 

relevantly generated invariants of the underlying molecular graph yields these molecular 

structures. Topological indices are called invariants of the graph and are useful in chemistry. 

Quantitative structure-property relation, QSPR, and quantitative structure-activity relation, 

QSAR, are two significant topological indices to readers’ study [6, 7, 8, 9, and 10]. Here property 

means some physical or chemical property, and structure means a molecular structure. 

 
Dendrimers are repetitively branched molecules [11]. The word dendrimer derives from the word 

Dendron, which means tree. Fritz Vogtle introduced the first dendrimer in 1978. Dendrimers are 

nanosized, void-spaced, monodispersed macromolecules with a high degree of terminal 

functionality and branching [12, 13]. Due to these properties, dendrimers play a prospective role 

in the field of drug delivery [14], cancer therapy [15], and catalysis [16]. Dendrimers are 

monodispersing, homogeneous, and well-defined structures; Dendrimers consist of tree-like 

branches or arms [17]. Generally, Dendrimers have three elements that are (i) a core, (ii) a 

branched dendron, and (iii) a terminal group [18]. The core is the main part of dendrimers. 

Triazine trichloride is one of the most important dendrimers [19]. We can display orthogonally 

functional surfaces by designing Triazine dendrimers. These orthogonally functional surfaces can 

enable post-synthetic management such as supplement of the drug, PEGylation, and the fixing of 

ligands [20, 21]. 
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Figure 2: 𝑇𝐵𝐷 − 𝐺𝑛 of First-generation Figure 3: 𝑇𝐵𝐷 − 𝐺𝑛 of the second generation 

 
Set of Edges  (𝒅𝒔, 𝒅𝒕) Frequency 

𝑬𝟏  (1,2) 6 × 22𝑛

3
 

𝑬𝟐 (2,2) 10 × 22𝑛 − 4

3
 

𝑬𝟑  (2,3) 22 × 22𝑛 − 22

3
 

𝑬𝟒  (3,3) 4 × 22𝑛 − 4

3
 

 Table 1: Edge partition of TBD-G_n. 

 

The molecular descriptor, another name for the topological index, is a mathematical formula that 

may be used to calculate and can be used on any graph representing a molecular structure. It is 

possible to examine mathematical values and explore various physical features of a molecule 

using this index. As a result, avoiding expensive and time-consuming laboratory tests is a good 

approach. In mathematical chemistry, molecular descriptors play an important function, 

especially in QSAR and QSPR investigations. 

A topological descriptor is an example of a molecular descriptor. Many topological indices are 

available today, some of which are used in chemistry. This can be classified based on the graphs 

used to calculate the structural properties. For example, to calculate the Hosoya index, we count 

the nonincident edges in a graph. The Wiener index is one of the most used and familiar 

topological indices. In 1947, Harold Wiener described and utilized it to help him correlate the 

boiling temperatures of several alkane isomers. Since 1947, more than 3000 topological graph 

indices have been registered in Chemical DataBases. Chemists and mathematicians both study 

this field of research [22, 33-47]. There is a growing interest in this topic, hence the topology 

graph. Some topological indices are discussed here, 

Definition 1.1: [23] The 1st Zagreb index 𝑀1(𝐺) is stated as 

𝑀1(𝐺) = ∑ (𝑑𝑠 + 𝑑𝑡)

𝑠𝑡∈𝐸(𝐺)

 

Definition 1.2: [23] The 2nd Zagreb index 𝑀2(𝐺) is stated as 
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2 

𝑀2(𝐺) = ∑ (𝑑𝑠. 𝑑𝑡)

𝑠𝑡∈𝐸(𝐺)

 

Definition 1.3: [24] Modified 2nd Zagreb index m𝑀2(𝐺) is stated as  

𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑀2(𝐺) = ∑
1

𝑑𝑠 . 𝑑𝑡
𝑠𝑡∈𝐸(𝐺)

 

Definition 1.4: [25] Augmented Zagreb Index 𝐴𝑍𝐼(𝐺) is stated as 

𝐴𝑍𝐼(𝐺) = ∑ (
𝑑𝑠𝑑𝑡

𝑑𝑠+𝑑𝑡 − 2
)
3

𝑠𝑡∈𝐸(𝐺)

 

Definition 1.5: [26]  Hyper Zagreb 2nd Index is 𝐻2(𝐺) and states as 

𝐻2(𝐺) = ∑ (𝑑𝑠.  𝑑𝑡)
2

𝑠𝑡∈𝐸(𝐺)

 

Definition 1.6: [27] Redefined 1st Zagreb Index is 𝑅𝑒𝑍 𝐺1(𝐺) and is stated as 

𝑅𝑒𝑍 𝐺1(𝐺) = ∑
𝑑𝑠 + 𝑑𝑠

𝑑𝑠.𝑑𝑡
𝑠𝑡∈𝐸(𝐺)

 

Definition 1.7: [28] Redefined 2nd Zagreb Index is 𝑅𝑒𝑍 𝐺2(𝐺)and stated as 

𝑅𝑒𝑍 𝐺2(𝐺) = ∑
𝑑𝑠. 𝑑𝑡

𝑑𝑠 + 𝑑𝑡
𝑠𝑡∈𝐸(𝐺)

 

Definition 1.8: [28] Redefined 3rd Zagreb Index  is 𝑅𝑒𝑍 𝐺3(𝐺) and is stated as 

𝑅𝑒𝑍 𝐺3(𝐺) = ∑ ((𝑑𝑠. 𝑑𝑡)(𝑑𝑠 + 𝑑𝑡))

𝑠𝑡∈𝐸(𝐺)

 

Definition 1.9: [29] Suppose that we have a probability density function 

𝑃𝑖𝑗 =
𝑤(𝑠𝑡)

∑𝑊(𝑠𝑡)
 

Then the entropy for any graph G is defined as 

 𝐼(𝐺, 𝑤) = −∑𝑃𝑖𝑗log (𝑃𝑖𝑗) 

 

Definition 1.10: [30] The first (a, b) − K.A. The index is introduced in [10] and defined as 

𝐾𝐴(𝑎,𝑏)
1 (𝐺) = ∑ [𝑑𝐺(𝑥)𝑎 + 𝑑𝐺(𝑦)𝑎]𝑏

𝑥𝑦∈𝐸(𝐺)

 

Where a, b ∈ R are chosen suitably. 

Definition 1.11: [31], The Sombor Index is introduced in [11] and defined as 

 

𝑆𝑂(𝐺) = ∑ √𝑑𝐺(𝑥)2 + 𝑑𝐺(𝑦)2

𝑥𝑦∈𝐸(𝐺)

If at First (a, b) − K.A. For the index, we take values a = 2 and b = 
1

2
 then we get the sombor index. 

Definition 1.12: [32], We define the modified sombor Index as the mSO (G), graph G as 

𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑆𝑂(𝐺) = ∑
1

√𝑑𝐺(𝑥)2 + 𝑑𝐺(𝑦)2

𝑥𝑦∈𝐸(𝐺)

Definition 1.13: [32], We define the reduced sombor Index for a graph G as 
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𝑅𝑆𝑂(𝐺) = ∑ √(𝑑
𝐺
(𝑥) − 1)2 + (𝑑

𝐺
(𝑦) − 1)2

𝑥𝑦∈𝐸(𝐺)

Definition 1.14: We define the reduced modified Sombor index for a graph G as 

𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑅𝑆𝑂(𝐺) = ∑
1

√(𝑑
𝐺
(𝑥) − 1)2 + (𝑑

𝐺
(𝑦) − 1)2

𝑥𝑦∈𝐸(𝐺)

Definition 1.15: We define Reduced 1st (a, b) − K.A. Index for a graph G as 

𝑅𝐾𝐴(𝑎,𝑏)
1 (𝐺) = ∑ [(𝑑𝐺(𝑥) − 1)

𝑎
+ (𝑑

𝐺
(𝑦) − 1)

𝑎
]
𝑏

𝑥𝑦∈𝐸(𝐺)

 

Definition 1.16: We define the Reduced 2nd (a, b) − K.A. Index for a graph G as 

𝑹𝑲𝑨(𝒂,𝒃)
𝟐 (𝑮) = ∑ [(𝒅𝑮(𝒙) − 𝟏)𝒂(𝒅𝑮(𝒚) − 𝟏)𝒂]𝒃

𝒙𝒚∈𝑬(𝑮)

 

Discussion and Results 

First, we compute the First (a, b) K.A. Index, Sombor Index, Modified Sombor Index, Reduced 

Sombor Index, Reduced modified Sombor Index, Reduced 1st (a, b) K.A. Index, Reduced 2nd (a, b) 

K.A. Index for TBD− Gn. Then in the later part of this section, we determine weighted entropies of 

𝑻𝑩𝑫 − 𝑮𝒏 by computing the topological properties such as the 1st Zagreb index, 2nd Zagreb index, 

Modified 2nd Zagreb index, Augmented Zagreb Index, Hyper Zagreb 2nd Index, Redefined 1st Zagreb 

Index, Redefined 2nd Zagreb Index and Redefined 3rd Zagreb Index. The general results for the 

computed indices and weighted entropies of 𝑻𝑩𝑫 − 𝑮𝒏 are computing are given as follows: 

Theorem 1: The First (a,b)−K.A. index of TBD−Gn is 

K. A.1 (a, b)[TBD − Gn] =
22𝑛

3
[
6 (1 + 2𝑎)𝑏 + 5(2𝑎𝑏+𝑏+1) +

22(2𝑎 + 3𝑎)𝑏 + (2𝑏+2. 3𝑎𝑏)
] −

2

3
[
2𝑎𝑏+𝑏+1 + 11(2𝑎 + 3𝑎)𝑏 +

(2𝑏+1. 3𝑎𝑏)
] 

Proof: By using table 1 and definition 1.10. We have 

 K. A.1 (a, b)[TBD − Gn] = ∑ [𝑑𝐺(𝑢)𝑎 + 𝑑𝐺(𝑣)𝑎]𝑏

𝑥𝑦∈𝐸(𝐺)

 

K. A.1 (a, b)[TBD − Gn] =

[
 
 
 

6 × 22𝑛

3
 [1𝑎 + 2𝑎]𝑏 +

10 × 22𝑛 − 4

3
[2𝑎 + 2𝑎]𝑏 +

22 × 22𝑛 − 22

3
[2𝑎 + 3𝑎]𝑏 +

4 × 22𝑛 − 4

3
[3𝑎 + 3𝑎]𝑏

]
 
 
 

  

K. A.1 (a, b)[TBD − Gn] =

[
 
 
 
6 × 22𝑛

3
 [1𝑎 + 2𝑎]𝑏 +

10 × 22𝑛

3
2𝑎𝑏+𝑏 +

22 × 22𝑛

3
[2𝑎 + 3𝑎]𝑏 +

+
4 × 22𝑛

3
[2 × 3𝑎]𝑏 −

4 × 2𝑎𝑏+𝑏

3
−

22

3
(2𝑎 + 3𝑎)𝑏 −

4

3
[2 × 3𝑎]𝑏]

 
 
 

 

K. A.1 (a, b)[TBD − Gn] =
22𝑛

3
[
6 (1 + 2𝑎)𝑏 + 5(2𝑎𝑏+𝑏+1) +

22(2𝑎 + 3𝑎)𝑏 + (2𝑏+2. 3𝑎𝑏)
] −

2

3
[
2𝑎𝑏+𝑏+1 + 11(2𝑎 + 3𝑎)𝑏 +

(2𝑏+1. 3𝑎𝑏)
] 

 

Corollary 1: By using table 1 and definition 1.11. We have 

SO[TBD − Gn] = ∑ √𝑑𝐺(𝑢2) + 𝑑𝐺(𝑣2)

𝑥𝑦∈𝐸(𝐺)
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𝑆𝑂[TBD − Gn]

= [
6 × 22𝑛 √5

3
+

(10 × 22𝑛 − 4) 2√2

3
+

(22 × 22𝑛 − 22) √13

3

+
(4 × 22𝑛 − 4) 3√2

3
] 

𝑆𝑂[TBD − Gn] =

[
 
 
 
 6 × 22𝑛 √5

3
+

(20 × 22𝑛) √2

3
−

8√2

3
+

(22 × 22𝑛) √13

3

−
22√13

3
+

(12 × 22𝑛) √2

3
−

12 √2

3 ]
 
 
 
 

 

𝑆𝑂[TBD − Gn] = [
22𝑛 

3
[6√5 + 20√2 + 22√13 + 12√2] −

2

3
[4√2 + 11√13 + 6√2]] 

𝑆𝑂[TBD − Gn] = [
22𝑛 

3
[6√5 + 32√2 + 22√13] −

2

3
[10√2 + 11√13]] 

 

Corollary 2: By using table 1 and definition 1.12. We have 
m𝑆𝑂(𝑇𝐵𝐷 − 𝐺𝑛) = [

|𝐸1|

√12+22
+

|𝐸2|

√22+22
+

|𝐸3|

√22+32
+

|𝐸4|

√32+33
] 

m𝑆𝑂(𝑇𝐵𝐷 − 𝐺𝑛) = [
6×22𝑛

3

√5
+

10×22𝑛−4

3

2√2
+

22×22𝑛−22

3

√13
+

4×22𝑛−4

3

3√2
] 

m𝑆𝑂(𝑇𝐵𝐷 − 𝐺𝑛) = (
6×22𝑛

3√5
+

10×22𝑛−4

3×2√2
+

22×22𝑛−22

3√13
+

4×22𝑛−4

3×3√2
) 

m𝑆𝑂(𝑇𝐵𝐷 − 𝐺𝑛) =
22𝑛

9√130
(22√10 + 18√26 + 19√65) −

2

3
(33√2 + 3√13) 

 

Corollary 3: By using table 1 and definition 1.13. We have 

𝑅𝑆𝑂[𝑇𝐵𝐷 − 𝐺𝑛]

= [
6 × 22𝑛

3
 √12 + (

10 × 22𝑛 − 4

3
)√2 + (

22 × 22𝑛 − 22

3
)√5 +

4 × 22𝑛 − 4

3
√8] 

𝑅𝑆𝑂[𝑃𝐷𝐿 − 𝐺𝑛] =

[
 
 
 
 
6 × 22𝑛

3
 √12 + (

10 × 22𝑛

3
)√2 −

4

3
√2 + (

22 × 22𝑛

3
)√5

−
22

3
√5 +

4 × 22𝑛

3
√8 −

4

3
√8 ]

 
 
 
 

  

𝑅𝑆𝑂[𝑇𝐵𝐷 − 𝐺𝑛] = [
22𝑛

3
[6 + 18√2 + 22√5] −

2

3
[6√2 + 22√5]] 

 

Corollary 4: By using table 1 and definition 1.14. We have 

m𝑅𝑆𝑂[𝑇𝐵𝐷 − 𝐺𝑛] = [
6×22𝑛

3

√1
+

10×22𝑛−4

3

√2
+

22×22𝑛−22

3

√5
+

4×22𝑛−4

3

2√2
] 

m𝑅𝑆𝑂[𝑇𝐵𝐷 − 𝐺𝑛] = [[
6×22𝑛

3
+

10×22𝑛−4

3√2
+

22×22𝑛−22

3√5
+

4×22𝑛−4

6√2
]] 

m𝑅𝑆𝑂[𝑇𝐵𝐷 − 𝐺𝑛] = [
22𝑛

3√10
[6√10 + 12√5 + 22√2] −

2

3
[√5 + 11√2]] 
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Theorem 2: The First Reduced (a,b)−K.A. index of TBD−Gn is 

RKA1(a, b)[TBD − Gn] = [

22𝑛

3
 [6 + 5(2𝑏+1) + 22(1 + 2𝑎)𝑏 + 2𝑎𝑏+𝑏+2] −

2

3
[2𝑏+1 + 11(1 + 2𝑎)𝑏 + 2𝑎𝑏+𝑏+2]

]  

Proof: By using table 1 and definition 1.15. We have 
RKA1(a, b)[PDL − Gn]

=

[
 
 
 
 
6 × 22𝑛

3
[(1 − 1)𝑎 + (2 − 1)𝑎]𝑏 + [(2 − 1)𝑎 + (2 − 1)𝑎]𝑏 [

10 × 22𝑛 − 4

3
] +

22 × 22𝑛 − 22

3
[(2 − 1)𝑎 + (3 − 1)𝑎]𝑏 +

4 × 22𝑛 − 4

3
[(3 − 1)𝑎 + (3 − 1)𝑎]𝑏

]
 
 
 
 

 

RKA1(a, b)[TBD − Gn] =

[
 
 
 
 
6 × 22𝑛

3
+ [2]𝑏 [

10 × 22𝑛 − 4

3
] +

22 × 22𝑛 − 22

3
[1 + (2)𝑎]

𝑏

+
4 × 22𝑛 − 4

3
[(2)𝑎+1]𝑏

]
 
 
 
 

 

 RKA1(a, b)[TBD − Gn] = [

22𝑛

3
 [6 + 5(2𝑏+1) + 22(1 + 2𝑎)𝑏 + 2𝑎𝑏+𝑏+2] −

2

3
[2𝑏+1 + 11(1 + 2𝑎)𝑏 + 2𝑎𝑏+𝑏+2]

] 

 

Theorem 3: The Second Reduced (a,b)−K.A. index of TBD −Gn is 

 RKA2(a, b)[𝑇𝐵𝐷 − Gn] = [
22𝑛

3
[10 + 22(2𝑎)𝑏 + (2)𝑎𝑏+𝑏+2] −

2

3
[2 + 11 × 2𝑎𝑏 + (2)𝑎𝑏+𝑏+1]  

Proof. By using table 1 and definition 1.16. We have 

RKA2(a, b)[𝑇𝐵𝐷 − Gn]

=

[
 
 
 
 

6 × 22𝑛

3
[(1 − 1)𝑎(2 − 1)𝑎]𝑏 + [(2 − 1)𝑎(2 − 1)𝑎]𝑏 [

10 × 22𝑛 − 4

3
]

+
22 × 22𝑛 − 22

3
[(2 − 1)𝑎(3 − 1)𝑎]𝑏 + [

4 × 22𝑛 − 4

3
] [(3 − 1)𝑎(3 − 1)𝑎]𝑏

]
 
 
 
 

 

 RKA2(a, b)[𝑇𝐵𝐷 − Gn]

= [[
10 × 22𝑛 − 4

3
+

22 × 22𝑛 − 22

3
+[(2)𝑎]𝑏 + [

4 × 22𝑛 − 4

3
] [(2)𝑎+1]𝑏]] 

 RKA2(a, b)[𝑇𝐵𝐷 − Gn] = [
22𝑛

3
[10 + 22(2𝑎)𝑏 + (2)𝑎𝑏+𝑏+2] −

2

3
[2 + 11 × 2𝑎𝑏 + (2)𝑎𝑏+𝑏+1] 

 

Theorem 4: The weighted entropy of 𝑇𝐵𝐷 − 𝐺𝑛 with the first Zagreb Index is 

𝐼(𝑇𝐵𝐷 − 𝐺𝑛 , 𝑀1) = log [64.22𝑛 − 50] −
1

[64.22𝑛 − 50] 
[(42.74430424141)22𝑛

−
35.0650967824

] 

Proof. By definition 1.1, We have 

𝑀1(𝑇𝐵𝐷 − 𝐺𝑛) = 64. 22𝑛 − 50 

by definition 1.9, 
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 𝐼(𝑇𝐵𝐷 − 𝐺𝑛, 𝑀1) = log[64. 22𝑛 − 50] −
1

[64.22𝑛−50] 

[
 
 
 

(1 + 2)|𝐸1| log(1 + 2) +
(2 + 2)|𝐸2| log(2 + 2) +

(2 +  3)|𝐸3| log (2 + 3) + 
(3 +  3)|𝐸4| log (3 + 3) ]

 
 
 

 

 𝐼(𝑇𝐵𝐷 − 𝐺𝑛, 𝑀1) = log[64. 22𝑛 − 50] −
1

[64.22𝑛−50] 
[

(3)|𝐸1| log(3) +
(8)|𝐸2| log(2) + (5)|𝐸3| log (5) +
(6)|𝐸4| log (2) + (6)|𝐸4| log (3)

] 

𝐼(𝑇𝐵𝐷 − 𝐺𝑛, 𝑀1)
= log[64. 22𝑛 − 50]

−
1

[64. 22𝑛 − 50] 
[
22𝑛 (

104

3
𝑙𝑜𝑔2 + 14𝑙𝑜𝑔3 +

110

3
𝑙𝑜𝑔5) −

(
56

3
𝑙𝑜𝑔2 + 8𝑙𝑜𝑔3 +

110

3
𝑙𝑜𝑔5)

] 

 𝐼(𝑇𝐵𝐷 − 𝐺𝑛, 𝑀1) = log[64. 22𝑛 − 50] −
1

[64.22𝑛−50] 
[
(42.74430424141)22𝑛 −

35.0650967824
] 

 

Theorem 5: The weighted entropy of 𝑇𝐵𝐷 − 𝐺𝑛 with the second Zagreb Index is 

𝐼(𝑇𝐵𝐷 − 𝐺𝑛, 𝑀2) = log [
220. 22𝑛 − 184

3
] −

3

[220. 22𝑛 − 184] 
[
(48.55953493425)22𝑛 −

42.53893502097
] 

Proof. By definition 1.2. We have, 

𝑀2(𝑇𝐵𝐷 − 𝐺𝑛) =
220. 22𝑛 − 184

3
 

by definition 1.9, 

𝐼(𝑇𝐵𝐷 − 𝐺𝑛, 𝑀2) = log [
220.22𝑛 − 184

3
] −

3

[220. 22𝑛 − 184] 
[
 
 
 
(1.2)|𝐸1| log(1.2) +
(2.2)|𝐸2| log(2.2) +
(2. 3)|𝐸3| log (2.3) + 
(3. 3)|𝐸4| log (3.3) ]

 
 
 

 

𝐼(𝑇𝐵𝐷 − 𝐺𝑛, 𝑀2) = log [
220. 22𝑛 − 184

3
] −

3

[220. 22𝑛 − 184] 
[

2|𝐸1| log(2) + 8|𝐸2| log 2 +

 6|𝐸3| log 2 + 6|𝐸3|𝑙𝑜𝑔3

18|𝐸4| log 3

] 

𝐼(𝑇𝐵𝐷 − 𝐺𝑛, 𝑀2) = log [
220. 22𝑛 − 184

3
] −

3

[220. 22𝑛 − 184] 
[
22𝑛 (

224

3
𝑙𝑜𝑔2 +

164

3
𝑙𝑜𝑔3) −

(
164

3
𝑙𝑜𝑔2 +

164

3
𝑙𝑜𝑔3)

] 

𝐼(𝑇𝐵𝐷 − 𝐺𝑛, 𝑀2) = log [
220. 22𝑛 − 184

3
] −

3

[220. 22𝑛 − 184] 
[
(48.55953493425)22𝑛 −

42.53893502097
] 

 

Theorem 6: The entropy of 𝑇𝐵𝐷 − 𝐺𝑛 with modified 2nd Zagreb weight is 

I (𝑇𝐵𝐷 − 𝐺𝑛, mM2) = 𝑙𝑜𝑔 [
36.22𝑛−36

3
] −

3

 [36.22𝑛−36] 
[

46.49231178526
−22𝑛(48.90055175057)

] 

Proof. By definition 1.3. We have, 

mM2(𝑇𝐵𝐷 − 𝐺𝑛) =
36.22𝑛−36

3
 

by definition 1.9, 
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I (𝑇𝐵𝐷 − 𝐺𝑛, mM2) = 𝑙𝑜𝑔 [
36.22𝑛−36

3
] −

3

 [36.22𝑛−36] 
[

1

1.2
|𝐸1|𝑙𝑜𝑔

1

1.2
+

1

2.2
|𝐸2|𝑙𝑜𝑔

1

2.2

+
1

2.3
|𝐸3|𝑙𝑜𝑔

1

2.3
+

1

3.3
|𝐸4|𝑙𝑜𝑔

1

3.3

] 

I (𝑇𝐵𝐷 − 𝐺𝑛, mM2) = 𝑙𝑜𝑔 [
36.22𝑛−36

3
] −

3

 [36.22𝑛−36] 
[

−
1

2
|𝐸1|𝑙𝑜𝑔2 −

1

2
|𝐸2|𝑙𝑜𝑔2

−
1

6
|𝐸3|𝑙𝑜𝑔2 −

1

6
|𝐸3|𝑙𝑜𝑔3 −

2

9
|𝐸4|𝑙𝑜𝑔3

] 

I (𝑇𝐵𝐷 − 𝐺𝑛, mM2) = 𝑙𝑜𝑔 [
36.22𝑛−36

3
] −

3

 [36.22𝑛−36] 
[(

140

3
𝑙𝑜𝑔2 +

204

3
𝑙𝑜𝑔3

−22𝑛 (
164

3
𝑙𝑜𝑔2 +

204

3
𝑙𝑜𝑔3)

)] 

I (𝑇𝐵𝐷 − 𝐺𝑛, mM2) = 𝑙𝑜𝑔 [
36.22𝑛−36

3
] −

3

 [36.22𝑛−36] 
[

46.49231178526
−22𝑛(48.90055175057)

] 

 

Theorem 7: The entropy of TBD − Gn with Augmented Zagreb weight is 

𝐼(𝑇𝐵𝐷 − 𝐺𝑛, 𝐴𝑍𝐼)

= log (
5593. 22𝑛 − 4057

48
) −

48

5593. 22𝑛 − 4057
[
(162.42215137306)22𝑛 −

133.52327178932
] 

Proof: By definition 1.4. We have, 

𝐴𝑍𝐼(𝑇𝐵𝐷 − 𝐺𝑛) =
5593. 22𝑛 − 4057

48
 

by definition 1.9, 
𝐼(𝑇𝐵𝐷 − 𝐺𝑛, 𝐴𝑍𝐼)

= log(
5593. 22𝑛 − 4057

48
)

−
48

5593. 22𝑛 − 4057
 

[
 
 
 
 
 
 
 
 (

1.2

1 + 2 − 2
)
3

|𝐸1|𝑙𝑜𝑔 (
1.2

1 + 2 − 2
)
3

+

(
2.2

2 + 2 − 2
)
3

|𝐸2|𝑙𝑜𝑔 (
2.2

2 + 2 − 2
)
3

+(
2.3

2 + 3 − 2
)
3

|𝐸3|𝑙𝑜𝑔 (
2.3

2 + 3 − 2
)
3

+

(
3.3

3 + 3 − 2
)
3

|𝐸4|𝑙𝑜𝑔 (
3.3

3 + 3 − 2
)
3

 ]
 
 
 
 
 
 
 
 

 

𝐼(𝑇𝐵𝐷 − 𝐺𝑛, 𝐴𝑍𝐼)

= log (
5593. 22𝑛 − 4057

48
)

−
48

5593. 22𝑛 − 4057

[
 
 
 
 

24|𝐸1|𝑙𝑜𝑔2 + 24|𝐸2|𝑙𝑜𝑔2 +

24|𝐸3|𝑙𝑜𝑔2 +
4374

64
|𝐸4|𝑙𝑜𝑔3 −

4374

64
|𝐸4|𝑙𝑜𝑔2 ]
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𝐼(𝑇𝐵𝐷 − 𝐺𝑛, 𝐴𝑍𝐼)

= log (
5593. 22𝑛 − 4057

48
)

−
48

5593. 22𝑛 − 4057
[
(
3161

8
𝑙𝑜𝑔2 +

4374

48
𝑙𝑜𝑔3) 22𝑛 −

(
2393

8
𝑙𝑜𝑔2 +

4374

48
𝑙𝑜𝑔3)

] 

𝐼(𝑇𝐵𝐷 − 𝐺𝑛, 𝐴𝑍𝐼)

= log (
5593. 22𝑛 − 4057

48
) −

48

5593. 22𝑛 − 4057
[
(162.42215137306)22𝑛 −

133.52327178932
] 

 

Theorem 8: The entropy of TBD − Gn with hyper, Zagreb's second weight is 

𝐼(𝑇𝐵𝐷 − 𝐺𝑛, 𝐻2) = log(
1300. 22𝑛 − 1800

3
) −

3

1300. 22𝑛 − 1800
[(686.0164546)22𝑛 −

642.6681352
] 

Proof: By definition 1.5. We have, 

𝐻2(𝑇𝐵𝐷 − 𝐺𝑛) = [
1300. 22𝑛 − 1800

3
] 

by definition 1.9, 

𝐼(𝑇𝐵𝐷 − 𝐺𝑛, 𝐻2) = log (
1300. 22𝑛 − 1800

3
) −

3

1300. 22𝑛 − 1800

[
 
 
 
 
(1.2)2|𝐸1|𝑙𝑜𝑔(1.2)2 +

(2.2)2|𝐸2|𝑙𝑜𝑔(2.2)2 +

(2.3)2|𝐸3|𝑙𝑜𝑔(2.3)2 +

(3.3)2|𝐸4|𝑙𝑜𝑔(3.3)2 ]
 
 
 
 

 

𝐼(𝑇𝐵𝐷 − 𝐺𝑛, 𝐻2)

= log (
1300. 22𝑛 − 1800

3
) −

3

1300. 22𝑛 − 1800
[

8|𝐸1|𝑙𝑜𝑔2 + 64|𝐸2|𝑙𝑜𝑔2 +

72|𝐸3|𝑙𝑜𝑔2 + 72|𝐸3|𝑙𝑜𝑔3

324|𝐸4|𝑙𝑜𝑔3
 

] 

𝐼(𝑇𝐵𝐷 − 𝐺𝑛 , 𝐻2)

= log (
1300. 22𝑛 − 1800

3
)

−
3

1300. 22𝑛 − 1800
[
𝑙𝑜𝑔2(8|𝐸1| + 64|𝐸2| + 72|𝐸3|) +

𝑙𝑜𝑔3(72|𝐸3| + 324|𝐸4|)
] 

𝐼(𝑇𝐵𝐷 − 𝐺𝑛, 𝐻2)

= log (
1300. 22𝑛 − 1800

3
) −

3

1300. 22𝑛 − 1800

[
 
 
 
 𝑙𝑜𝑔2(

2272. 22𝑛

3
−

1840

3
) +

𝑙𝑜𝑔3(
2880. 22𝑛

3
−

2880

3
)

]
 
 
 
 

 

  

𝐼(𝑇𝐵𝐷 − 𝐺𝑛, 𝐻2) = log (
1300. 22𝑛 − 1800

3
) −

3

1300. 22𝑛 − 1800
[
(686.0164546)22𝑛 −

642.6681352
] 

 

Theorem 9: The entropy of TBD − Gn with redefined first Zagreb weight is 
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𝐼(𝑇𝐵𝐷 − 𝐺𝑛, 𝑅𝑒𝑍(𝐺1)) = log [(
40. 22𝑛 − 25

3
)] −

3

[40. 22𝑛 − 25]
[

5.191071046 +

(0.112137179)22𝑛] 

Proof: By definition, 1.6. We have, 

𝑅𝑒𝑍𝐺1(𝑇𝐵𝐷 − 𝐺𝑛) = [
40. 22𝑛 − 25

3
] 

by definition 1.9, 

𝐼(𝑇𝐵𝐷 − 𝐺𝑛, 𝑅𝑒𝑍(𝐺1)) = log [(
40. 22𝑛 − 25

3
)] −

3

[40. 22𝑛 − 25]
[

1 + 2

1.2
|𝐸1|𝑙𝑜𝑔

1 + 2

1.2
+

2 + 2

2.2
|𝐸2|𝑙𝑜𝑔

2 + 2

2.2
+

2 + 3

2.3
|𝐸3|𝑙𝑜𝑔

2 + 3

2.3
+

3 + 3

3.3
|𝐸4|𝑙𝑜𝑔

3 + 3

3.3

] 

𝐼(𝑇𝐵𝐷 − 𝐺𝑛, 𝑅𝑒𝑍(𝐺1))

= log [(
40. 22𝑛 − 25

3
)] −

3

[40. 22𝑛 − 25]

[
 
 
 
 
 

3

2
|𝐸1|𝑙𝑜𝑔3 −

3

2
|𝐸1|𝑙𝑜𝑔2 +

5

6
|𝐸3|𝑙𝑜𝑔5 −

5

6
|𝐸3|𝑙𝑜𝑔2 −

5

6
|𝐸3|𝑙𝑜𝑔3 +

2

3
|𝐸4|𝑙𝑜𝑔2 −

2

3
|𝐸4|𝑙𝑜𝑔3]

 
 
 
 
 

 

𝐼(𝑇𝐵𝐷 − 𝐺𝑛, 𝑅𝑒𝑍(𝐺1))

= log [(
40. 22𝑛 − 25

3
)] −

3

[40. 22𝑛 − 25]

[
 
 
 
 
 𝑙𝑜𝑔2 (−

3

2
|𝐸1| −

5

6
|𝐸3| +

2

3
|𝐸4|) +

𝑙𝑜𝑔3 (
3

2
|𝐸1| −

5

6
|𝐸3| −

2

3
|𝐸4|) +

𝑙𝑜𝑔5 (
5

6
|𝐸3|) ]

 
 
 
 
 

 

𝐼(𝑇𝐵𝐷 − 𝐺𝑛, 𝑅𝑒𝑍(𝐺1)) = log [(
40. 22𝑛 − 25

3
)] −

3

[40. 22𝑛 − 25]

[
 
 
 
 
 
 𝑙𝑜𝑔2(

−74. 22𝑛

9
−

47

9
) +

𝑙𝑜𝑔3 (−4. 22𝑛 −
47

9
) +

𝑙𝑜𝑔5(
110. 22𝑛

18
−

110

18
)

]
 
 
 
 
 
 

 

𝐼(𝑇𝐵𝐷 − 𝐺𝑛, 𝑅𝑒𝑍(𝐺1)) = log [(
40. 22𝑛 − 25

3
)] +

3

[40. 22𝑛 − 25]
[

5.191071046 +
(0.112137179)22𝑛] 

 

Theorem 10: The entropy of TBD − Gn with redefined second Zagreb weight is  

𝐼(𝑇𝐵𝐷 − 𝐺𝑛, 𝑅𝑒𝑍(𝐺2)) = log [(232.22𝑛 − 182
15

)] +
15

[232.22𝑛 − 182]
[(4.91481316336)22𝑛

−5.14960150877
] 

Proof: By definition 1.7. We have, 

𝑅𝑒𝑍𝐺2(𝑇𝐵𝐷 − 𝐺𝑛) =
232. 22𝑛 − 182

15
 

by definition 1.9, 
𝐼(𝑇𝐵𝐷−𝐺𝑛, 𝑅𝑒𝑍(𝐺2))

= log [(232.22𝑛 −182
15

)] +
15

[232.22𝑛 −182]
[

1.2

1 + 2
|𝐸1|𝑙𝑜𝑔

1.2

1 + 2
+

2.2

2 + 2
|𝐸2|𝑙𝑜𝑔

2.2

2 + 2
+

2.3

2 + 3
|𝐸3|𝑙𝑜𝑔

2.3

2 + 3
+

3.3

3 + 3
|𝐸3|𝑙𝑜𝑔

3.3

3 + 3

] 
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𝐼(𝑇𝐵𝐷 − 𝐺𝑛, 𝑅𝑒𝑍(𝐺2)) = log [(
232. 22𝑛 − 182

15
)] +

15

[232. 22𝑛 − 182]

[
 
 
 
 
 

2

3
|𝐸1|𝑙𝑜𝑔2 −

2

3
|𝐸1|𝑙𝑜𝑔3 +

6

5
|𝐸3|𝑙𝑜𝑔2 +

6

5
|𝐸3|𝑙𝑜𝑔3

−
6

5
|𝐸3|𝑙𝑜𝑔5 +

2

3
|𝐸4|𝑙𝑜𝑔2 −

2

3
|𝐸4|𝑙𝑜𝑔3]

 
 
 
 
 

 

𝐼(𝑇𝐵𝐷 − 𝐺𝑛, 𝑅𝑒𝑍(𝐺2)) = log [(
232. 22𝑛 − 182

15
)] +

15

[232. 22𝑛 − 182]

[
 
 
 
 
 𝑙𝑜𝑔2 (

2

3
|𝐸1| +

6

5
|𝐸3| +

2

3
|𝐸4|) +

𝑙𝑜𝑔3 (−
2

3
|𝐸1| +

6

5
|𝐸3| −

2

3
|𝐸4|) +

𝑙𝑜𝑔5 (−
6

5
|𝐸3|) ]

 
 
 
 
 

 

𝐼(𝑇𝐵𝐷−𝐺𝑛, 𝑅𝑒𝑍(𝐺2)) = log [(232.22𝑛 −182
15

)] +
15

[232.22𝑛 −182]

[
 
 
 
 
 
 
 
 
 
 
𝑙𝑜𝑔2(

122.22𝑛

15
−

102
15

) +

𝑙𝑜𝑔3(
142.22𝑛

15
−

162
15

) +

𝑙𝑜𝑔5(
−44.22𝑛

15
+

44
15

)

]
 
 
 
 
 
 
 
 
 
 

 

𝐼(𝑇𝐵𝐷 − 𝐺𝑛, 𝑅𝑒𝑍(𝐺2)) = log [(
232. 22𝑛 − 182

15
)] +

15

[232. 22𝑛 − 182]
[(4.91481316336)22𝑛

−5.14960150877
] 

 

Theorem 11: The entropy of TBD − Gn with redefined third Zagreb weight is  

𝐼(𝑇𝐵𝐷 − 𝐺𝑛, 𝑅𝑒𝑍(𝐺3))

= log [(
1072. 22𝑛 − 940

3
)] +

3

[1072. 22𝑛 − 940]
[(513.62361429725)22𝑛

−465.75395984766
] 

Proof. By definition, 1.8. We have, 

𝑅𝑒𝑍𝐺3(𝑇𝐵𝐷 − 𝐺𝑛) =
1072. 22𝑛 − 940

3
 

by definition 1.9, 

𝐼(𝑇𝐵𝐷 − 𝐺𝑛, 𝑅𝑒𝑍(𝐺3)) = log [(
1072. 22𝑛 − 940

3
)] +

3

[1072. 22𝑛 − 940]

[
 
 
 
(1.2)(1 + 2)|𝐸1| log(1.2)(1 + 2) +

(2.2)(2 + 2)|𝐸2| log(2.2)(2 + 2) +

(2. 3)(2 + 3)|𝐸3| log(2.3) (2 + 3) +

(3. 3)(3 + 3)|𝐸4| log(3.3) (3 + 3) ]
 
 
 

 

 

𝐼(𝑇𝐵𝐷 − 𝐺𝑛 , 𝑅𝑒𝑍(𝐺3)) = log [(
1072. 22𝑛 − 940

3
)] +

3

[1072. 22𝑛 − 940]
[
6|𝐸1| log6 + 16|𝐸2| log16 +
30|𝐸3|log30 +  54|𝐸3|log54

] 

𝐼(𝑇𝐵𝐷 − 𝐺𝑛, 𝑅𝑒𝑍(𝐺2))

= log [(
232. 22𝑛 − 182

15
)] +

15

[232. 22𝑛 − 182]
[

𝑙𝑜𝑔2(6|𝐸1| + 64|𝐸2| + 30|𝐸3| + 54|𝐸4|) +

𝑙𝑜𝑔3(6|𝐸1| + 30|𝐸3| + 162|𝐸4|) +

𝑙𝑜𝑔5(30|𝐸3|)
] 
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𝐼(𝑇𝐵𝐷−𝐺𝑛, 𝑅𝑒𝑍(𝐺2)) = log [(232.22𝑛 −182
15

)] +
15

[232.22𝑛 −182]

[
 
 
 
 
 
 
 
 
 
 
𝑙𝑜𝑔2(

1456.22𝑛

3
−

1036
3

) +

𝑙𝑜𝑔3(
1344.22𝑛

3
−

1308
3

) +

𝑙𝑜𝑔5(
660.22𝑛

3
−

660
3

)

]
 
 
 
 
 
 
 
 
 
 

 

𝐼(𝑇𝐵𝐷 − 𝐺𝑛, 𝑅𝑒𝑍(𝐺3))

= log [(
1072. 22𝑛 − 940

3
)] +

3

[1072. 22𝑛 − 940]
[(513.62361429725)22𝑛

−465.75395984766
] 

 

 

 
 Figure 4: Comparison of Topological indices for TBD− Gn  

 

 
Figure 5: Comparison of Entropies for TBD− Gn 
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Conclusions and Further work: 

In this paper, we dealt with Triazine Based Dendrimers and studied topological indices such as 

the First (a, b) K.A. Index, Sombor Index, Modified Sombor Index, Reduced Sombor Index, 

Reduced modified Sombor Index, Reduced 1st (a, b) K.A. Index, Reduced 2nd -(a, b) K.A. Index 

for TBD− Gn. We used some topological properties such as the First Zagreb index, Second 

Zagreb index, modified second Zagreb index, Augmented Zagreb Index, Hyper Zagreb 2nd 

Index, Redefined 1st Zagreb Index, Redefined 2nd Zagreb Index and Redefined 3rd Zagreb 

Index to compute weighted entropies of 𝑇𝐵𝐷 − 𝐺𝑛  Which will be helpful in computational 

chemistry. Dendrimers have an underlying structure that can be explored and understood by 

people working in network science with the help of analytical closed formulas developed for 

𝑇𝐵𝐷 − 𝐺𝑛  in this article. Our future research interests will be designing new 

architectures/networks and studying their topological indices to understand their underlying 

topologies and entropies
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