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Abstract 

Identification of Neurological diseases requires efficient analysis of multiple parameters that include clinical 

readings, electroencephalogram (EEG) signals, Computer Tomography (CT) scans, etc. To perform these tasks, 

researchers have proposed use of different machine learning models that can perform feature extraction, 

augmentation, selection, classification & post processing operations. EEG signals are observed to have better 

neurological disease classification performance then other features. But existing models that perform EEG 

classifications are either highly complex, or showcase limited accuracy performance due to the density of 

features presented by EEG signals. To overcome this limitation, a novel Grey Wolf Optimization (GWO) Model 

to Selectively Augment Multiple lead EEG signals for prediction of Neurological diseases is discussed in this 

text. These disorders include Epilepsy, Seizures, Amyotrophic Lateral Sclerosis, Alzheimer's Disease, 

Dementia, and Parkinson's Disease, which are commonly observed in most patients. The proposed model 

initially uses a combination of multiple lead EEGs, and extracts Mel Frequency Cepstral Components (MFCCs) 

from these signals. These MFCC values are given to a GWO based classifier parameter selection model, that 

uses a combination of Naïve Bayes (NB), 1D CNN, and SVM based classifiers. These classifiers are combined 

to form a novel ensemble deep learning classification model, that is capable of high-accuracy, and low-error 

classification operations. The GWO Model defines a novel fitness metric that combines accuracy, precision, 

and recall values, which assists in improving classifier parameter selection efficiency. Performance of this 

model was compared with various state-of-the-art models, and it was observed that the proposed model 

showcases 5.4% better accuracy, 3.5% better recall, and 4.5% better precision, which makes it useful for clinical 

deployments. 
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Introduction 

Classifying EEG signals for identification of different 

neurological diseases requires development of multiple 

models that can pre-process, filter noise, extract useful 

segments, optimize feature representation, deploy 

classifiers, and augments their responses via post-

processing operations. Such models are multidomain in 

nature, and require validation on large-scale datasets. A 

typical model that can process EEG signals, and classify 

them into multiple neurological categories [1] can be 

observed from figure 1, wherein Discrete Wavelet 

Transform (DWT) along with sub-band relative entropies 

are evaluated for feature representation of raw EEG 

signals. These features are normalized via equation 1, 

where input signal and its maximum values are used as 

follows, 

𝑁𝑠(𝑡) =
𝑆(𝑡)

𝑀𝑎𝑥(𝑆(𝑡))
… (1) 

Where, 𝑁𝑠 & 𝑆 represents normalized signal and original 

signal values, while 𝑀𝑎𝑥(𝑆) represents it maximum 

amplitude levels. These features are classified via a set of 

linear & machine learning classification models, which 

assists in identification of different neurological 

conditions.  

 

Figure 1. Design of a typical EEG classification model 

Similar classification models [2, 3, 4] along with their 

contextual nuances, application-specific advantages, 

deployment-specific limitations, and functional future 

research scopes are discussed in the next section of this 

text. Based on this discussion it was observed that these 

models are either highly complex, or showcase limited 

accuracy performance due to low feature density levels. To 

overcome this issue, section 3 discusses design of a novel 
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Grey Wolf Optimization (GWO) Model that performs 

classifier parameter selection for multiple lead EEG 

signals. These signals are used to classify disorders 

including Epilepsy, Seizures, Amyotrophic Lateral 

Sclerosis, Alzheimer's Disease, Dementia, and Parkinson's 

Disease, which are commonly observed in most patients. 

The proposed model was evaluated in section 4, wherein 

its accuracy, precision, and recall performance was 

compared with different state-of-the-art methods. This 

study finishes with extensive observations on the proposed 

model and suggestions for enhancing its performance in a 

range of application scenarios.  

1. Literature Review 

Classifying EEG signals is a 1D signal processing task, 

thus large variety of models are proposed to categorize 

these signals into different categories. For instance, work 

in [5, 6] propose use of Support vector machine (SVM) 

with cross validations, and Deep Convolutional Neural 

Network (DCNN) that assist in efficient binary 

classification under different EEG datasets. But these 

models have lower scalability, which can be improved via 

use of Joint EEG-Development Inference (JEDI) [7] that 

combines multiple EEG sets, and classifies them via 

context-specific models. The JEDI Model serves as an 

interface towards improving classification performance for 

large scale sets. Based on this model, work in [8, 9, 10] 

proposes use of BioCNN, Network-Based Takagi-Sugeno-

Kang (NB TSK), and Taylor-Fourier EEG-band energy 

(TFEBE) features with SVM, that assists in identification 

of large-scale EEG feature sets for efficient classification 

performance. But these models have higher complexity, 

thus cannot be used for high-speed applications. To 

overcome this limitation, work in [11, 12, 13] propose use 

of Synchronization Patterns, one-dimensional 

convolutional variational autoencoder (1D CVAE), and 

Model Agnostic Meta-Learning (MAML), which assists in 

reducing feature complexity under multiple disease types. 

These models showcase higher accuracy, and lower delay, 

thus can be applied for real time application scenarios.  

Models that use Long Short-Term Memory (LSTM) [14], 

channel selection with CNN [15], Fourier transform (DFT) 

with Adaptive Chirp Mode Decomposition (ACMD) [16], 

multi-view Takagi-Sugeno-Kang Fuzzy CNN (MV-TSK-

FCNN) [17], Resource-Efficient Oblique Trees [18], and 

Power Spectral Density Difference (PSDD) [19] are also 

discussed by researchers for high-efficiency operations. 

These models aim at improving feature density levels via 

estimation of highly variant feature sets under large-scale 

classification scenarios. These models are further extended 

in [20, 21, 22] via use of Decision Tree (DT), SVMs, and 

Fourier-Bessel series expansion domain empirical wavelet 

transform (FBSE-EWT) filters that are used with sparse 

autoencoder based support vector machine (SAE-SVM), 

for low complexity and high efficiency classification 

operations. These models transform input EEG signals and 

extract dense feature sets in order to optimize it real-time 

performance. Similar models are proposed in [23, 24, 25, 

26], wherein Recurrent Neural Networks (RNN), Deep 

Convolutional LSTM (DC-LSTM), Parkinson's disease 

CNN (PDCNNet), and Multiple Output Gaussian process 

(MOGP) that enables better feature extraction & selection 

capabilities under multiple EEG datasets. But these models 

are either highly complex, or are capable of achieving 

limited accuracy performance for multiple neurological 

disorders. This is due to the density of features presented 

by EEG signals. To overcome these issues, next section 

proposes design of a novel Grey Wolf Optimization 

(GWO) Model that Selectively Augments Multiple lead 

EEG signals for prediction of Neurological diseases. The 

proposed model was also evaluated on multiple datasets, 

and compared with various state-of-the-art methods for 

real-time performance estimation under different 

scenarios. 

2. Proposed GWO Model to Selectively Augment 

Multiple lead EEG signals for prediction of 

Neurological diseases 

Based on the literature survey, it was observed that existing 

EEG classification models are either highly complex, or 
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are capable of achieving limited accuracy performance for 

multiple neurological disorders. This is due to the density 

of features presented by EEG signals.  

 

Figure 2. Overall flow of the proposed model 

To overcome these issues, this section proposes design of 

a novel Grey Wolf Optimization (GWO) Model that 

Selectively Augments Multiple lead EEG signals for 

prediction of Neurological diseases. Flow of the proposed 

model is depicted in figure 2, wherein it can be observed 

that the model initially uses a combination of multiple lead 

EEGs, and extracts Mel Frequency Cepstral Components 

(MFCCs) from these signals. A GWO-based classifier 

parameter selection model that combines Naive Bayes 

(NB), 1D CNN, and SVM-based classifiers is activated via 

these MFCC values. A unique ensemble deep learning 

classification model that can perform high-accuracy and 

low-error classification tasks is created by combining 

several classifiers. In order to increase the effectiveness of 

classifier parameter selection, the GWO Model provides a 

unique fitness measure that combines accuracy, precision, 

and recall values under different use cases. 

The proposed model initially processes all EEG signals via 

MFCC feature extraction techniques, which assists in 

identification of cepstral components. These components 

are evaluated via equation 2, where normalized form of 

input EEG signals are used for multispectral analysis. 

𝑀𝐹𝐶𝐶𝑖 = ∑

𝑁

𝑚=1

𝑙𝑜𝑔 𝑙𝑜𝑔 [∑

𝑁−1

𝑖=0

[𝑁𝑠𝑖
]

2

∗ |
𝑖 − 𝑓(ℎ − 1)

𝑓(ℎ) − 𝑓(ℎ − 1)
|

ℎ∈(−1,1)

]  ∗

𝑐𝑜𝑠 𝑐𝑜𝑠 [𝑖 ∗ (𝑚 −
1

2
) ∗

𝑝𝑖

𝑁
] … (2) 

Where, 𝑁𝑠 represents normalized EEG signal while 𝑓 

represents frequency components of filter banks, and 𝑀 

represents number of MFCCs extracted by the model via 

augmentation process. These MFCCs are processed via a 

combination of different classification models, which are 

controlled by the GWO Model, that works via the 

following process, 

● Setup the GWO Model via initialization of following 

parameters, 

o Total quantity of wolves used during optimization 

phase (𝑁𝑤) 

o Maximum iterations that can be used to obtain the 

optimized solution sets (𝑁𝑖) 

o Rate at which the wolves learn (𝐿𝑟) 

o Minimum & Maximum values of Smoothing factor 

for Naïve Bayes (𝑀𝑖𝑛𝑆𝐹 , 𝑀𝑎𝑥𝑆𝐹) 

o Minimum & Maximum values for error tolerance for 

SVM (𝑀𝑖𝑛𝑒 , 𝑀𝑎𝑥𝑒) 
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o Minimum & Maximum values for CNN 

Hyperparameters (𝑀𝑖𝑛ℎ, 𝑀𝑎𝑥ℎ) 

● Before iterating the model, setup all wolves to be 

‘Delta Wolves’ 

● Go to each iteration, and scan all wolves via the 

following process, 

o Check if wolf is not marked as ‘Delta Wolf’, then 

skip it and go to the next wolf in sequence 

o Else, generate new wolf configuration via equation 

3, 4, and 5 as follows, 

𝑁𝐵(𝑆𝐹) = 𝑆𝑇𝑂𝐶𝐻(𝑀𝑖𝑛𝑆𝐹, 𝑀𝑎𝑥𝑆𝐹) … (3) 

𝑆𝑉𝑀(𝐸) = 𝑆𝑇𝑂𝐶𝐻(𝑀𝑖𝑛𝑒 , 𝑀𝑎𝑥𝑒) … (4) 

𝐶𝑁𝑁(𝐻𝑖) = 𝑆𝑇𝑂𝐶𝐻(𝑀𝑖𝑛ℎ𝑖
, 𝑀𝑎𝑥ℎ𝑖

) … (5) 

Where, 𝑆𝑇𝑂𝐶𝐻 represents a Markovian Stochastic process 

for generation of number sets, while 

𝑁𝐵(𝑆𝐹), 𝑆𝑉𝑀(𝐸), 𝑎𝑛𝑑 𝐶𝑁𝑁(𝐻𝑖) represents smoothing 

factor value of NB, error tolerance for SVM, and 𝑖𝑡ℎ 

hyperparameter for CNN respectively. 

o Based on these parameters, MFCCs are classified 

into 1 of 𝑁 neurological classes, and wolf fitness is 

evaluated via equation 5, 

𝑓𝑤 =
1

𝑁𝑠

∑

𝑁𝑠

𝑖=1

𝐴(𝑁𝐵)𝑖 + 𝐴(𝑆𝑉𝑀)𝑖 + 𝐴(𝐶𝑁𝑁)𝑖

+ 𝑃(𝑁𝐵)𝑖 + 𝑃(𝑆𝑉𝑀)𝑖 + 𝑃(𝐶𝑁𝑁)𝑖

+ 𝑅(𝑁𝐵)𝑖 + 𝑅(𝑆𝑉𝑀)𝑖

+ 𝑅(𝐶𝑁𝑁)𝑖 … (5) 

Where, 𝐴, 𝑃 & 𝑅 represents accuracy, precision, & recall 

levels for different classifiers. 

o This fitness is evaluated for different wolves, and at 

the end of each iteration, a fitness threshold is 

evaluated via equation 6, 

𝑓𝑡ℎ =
𝐿𝑤

𝑁𝑤

∗ ∑

𝑁𝑤

𝑖=1

𝑓𝑤𝑖
… (6) 

● At the end of every iteration, change marking of the 

wolf via the following process, 

o If 𝑓𝑤 > 2 ∗ 𝑓𝑡ℎ, then mark it as ‘Alpha Wolf’ 

o Else, if 𝑓𝑤 > 𝑓𝑡ℎ, then mark it as ‘Beta Wolf’ 

o Else, if 𝑓𝑤 < 2 ∗ 𝑓𝑡ℎ, then mark it as ‘Delta Wolf’ 

o Else, mark the wolf as ‘Gamma Wolf’ 

● Repeat this process for all iterations, and identify 

‘Alpha Wolves' each of the iterations 

At the end of final iteration, select ‘Alpha Wolf’, and use 

its classifier configurations to classify input EEG signals 

into multiple neurological classes. Performance of this 

model was evaluated on multiple datasets, and compared 

with different state-of-the-art methods in the next section 

of this text. 

3. Result & Comparison 

The EEG classification model uses a combination of 

MFCC with GWO for estimation of classifier 

configurations to estimate different neurological classes. 

The model was evaluated in terms of classification 

accuracy (A), precision of classification (P), classification 

recall (R), and classification delay (D) performance levels. 

The model was compared with 1D CVAE [12], MV TSK 

FCNN [17], and DC LSTM [25], which will assist in 

validation of its performance under different classification 

scenarios. These scenarios include Epilepsy, Seizures, 

Amyotrophic Lateral Sclerosis, Alzheimer's Disease, 

Dementia, and Parkinson's Diseases, which were taken 

from TU 

(https://isip.piconepress.com/projects/tuh_eeg/html/downl

oads.shtml), UCI 

(https://archive.ics.uci.edu/ml/datasets/eeg+database), & 

Google Toolbox (https://ieee-dataport.org/documents/eeg-

signal-dataset), which were combined to form a large set 

of EEG signals. A total of 100k EEG records were 

aggregated, out of which 60% were used for training while 

other 40% were used for testing & validation purposes. 

Based on this strategy, classification accuracy (A) was 

evaluated and tabulated w.r.t. Testing & Validation EEGs 

(TVE) in table 1 as follows, 

TVE 

(1000s 

records) 

A (%) 

1D 

CVAE 

[12] 

A (%) 

MV 

TSK 

FCNN 

[17] 

A (%) 

DC 

LSTM 

[25] 

A (%) 

QMWT 

8 80.81 81.59 79.94 85.03 

12 82.36 82.99 81.24 86.52 

16 83.62 84.12 82.29 87.73 

24 84.62 85.03 83.14 88.70 

28 85.44 85.79 83.88 89.51 

https://isip.piconepress.com/projects/tuh_eeg/html/downloads.shtml
https://isip.piconepress.com/projects/tuh_eeg/html/downloads.shtml
https://archive.ics.uci.edu/ml/datasets/eeg+database
https://ieee-dataport.org/documents/eeg-signal-dataset
https://ieee-dataport.org/documents/eeg-signal-dataset
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32 86.15 86.54 84.63 90.29 

36 86.92 87.38 85.48 91.15 

40 87.84 88.32 86.40 92.13 

44 88.81 89.28 87.33 93.13 

48 89.76 90.21 88.23 94.10 

52 90.66 91.11 89.10 95.04 

56 91.62 92.05 90.01 95.94 

60 92.66 93.03 90.96 96.73 

64 93.77 94.07 91.95 97.35 

68 94.79 95.04 92.89 98.26 

72 95.76 95.99 93.79 99.29 

Table 1. Comparison of accuracy for different models 

Based on the evaluation in table 1, figure 3, it can be 

observed that the proposed model is capable of achieving 

3.5% higher accuracy than 1D CVAE [12], 3.2% higher 

accuracy than MV TSK FCNN [17], and 5.5% higher 

accuracy than DC LSTM [25], under different neurological 

classification scenarios. The reason for this enhancement 

is use of GWO with ensemble classification process. 

 

Figure 3. Comparison of accuracy for different models 

Similar performance was evaluated for precision levels, 

and can be observed from table 2 as follows, 

TVE P (%) 

1D 

CVAE 

[12] 

P (%) 

MV 

TSK 

FCNN 

[17] 

P (%) 

DC 

LSTM 

[25] 

P (%) 

QMWT 

8 77.33 76.92 78.55 81.18 

12 78.74 78.21 79.89 82.63 

16 79.88 79.24 80.96 83.80 

24 80.79 80.08 81.83 84.74 

28 81.54 80.80 82.57 85.53 

32 82.24 81.51 83.30 86.26 

36 83.00 82.31 84.11 87.08 

40 83.89 83.20 85.01 88.01 

44 84.80 84.10 85.93 88.96 

48 85.70 84.97 86.82 89.90 

52 86.56 85.82 87.69 90.80 

56 87.46 86.70 88.59 91.74 

60 88.42 87.62 89.54 92.75 

64 89.45 88.59 90.54 93.81 

68 90.40 89.50 91.47 94.80 

72 91.31 90.37 92.37 95.75 

Table 2. Comparison of precision for different models 

Based on the evaluation in table 2, figure 4, it can be 

observed that the proposed model is capable of achieving 

2.5% higher precision than 1D CVAE [12], 4.5% higher 

precision than MV TSK FCNN [17], and 3.5% higher 

precision than DC LSTM [25], under different 

neurological classification scenarios. The reason for this 

enhancement is use of continuous parameter optimization 

based on GWO with ensemble classification process. 
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Figure 4. Comparison of precision for different models 

Similar performance was evaluated for recall levels, and 

can be observed from table 3 as follows, 

TVE R (%) 

1D 

CVAE 

[12] 

R (%) 

MV 

TSK 

FCNN 

[17] 

R (%) 

DC 

LSTM 

[25] 

R (%) 

QMWT 

8 79.07 79.25 79.24 83.10 

12 80.55 80.59 80.56 84.57 

16 81.74 81.68 81.62 85.76 

24 82.70 82.56 82.48 86.72 

28 83.49 83.30 83.23 87.52 

32 84.20 84.03 83.96 88.28 

36 84.96 84.85 84.79 89.11 

40 85.87 85.77 85.71 90.07 

44 86.80 86.70 86.63 91.05 

48 87.73 87.59 87.53 92.00 

52 88.61 88.46 88.40 92.92 

56 89.54 89.37 89.30 93.89 

60 90.53 90.32 90.25 94.91 

64 91.60 91.33 91.25 95.99 

68 92.59 92.27 92.18 97.00 

72 93.53 93.18 93.08 97.97 

Table 3. Comparison of recall for different models 

Based on the evaluation in table 3, figure 5, it can be 

observed that the proposed model is capable of achieving 

2.5% higher precision than 1D CVAE [12], 4.5% higher 

precision than MV TSK FCNN [17], and 3.5% higher 

precision than DC LSTM [25], under different 

neurological classification scenarios. The reason for this 

enhancement is use of continuous parameter optimization 

based on GWO with ensemble classification process. 

 

Figure 5. Comparison of recall for different models 

Similar performance was evaluated for computational 

delay levels, and can be observed from table 4 as follows, 

TVE D (ms) 

1D 

CVAE 

[12] 

D (ms) 

MV 

TSK 

FCNN 

[17] 

D (ms) 

DC 

LSTM 

[25] 

D (ms) 

QMWT 

8 1.44 1.44 1.44 1.37 

12 1.83 1.83 1.83 1.74 

16 2.20 2.21 2.21 2.10 

24 2.58 2.58 2.59 2.46 

0

50

100

150

8 12 16 24 28 32 36 40 44 48 52 56 60 64 68 72

1D CVAE [12] MV TSK FCNN [17]

DC LSTM [25] QMWT

0

20

40

60

80

100

120

8 12 16 24 28 32 36 40 44 48 52 56 60 64 68 72

1D CVAE [12] MV TSK FCNN [17]

DC LSTM [25] QMWT



GSAMEN: Design of a GWO Model to Selectively Augment Multiple lead EEG signals for prediction 

of Neurological diseases 
 

Section A-Research paper 

 
 

3417 
Eur. Chem. Bull. 2023,12 (6), 3410-3419 

28 2.95 2.96 2.96 2.81 

32 3.35 3.35 3.36 3.19 

36 3.80 3.80 3.81 3.62 

40 4.33 4.34 4.34 4.12 

44 4.95 4.95 4.95 4.71 

48 5.61 5.62 5.62 5.35 

52 6.30 6.31 6.31 6.00 

56 6.91 6.93 6.93 6.59 

60 7.44 7.46 7.46 7.09 

64 7.87 7.89 7.89 7.50 

68 8.29 8.30 8.30 7.90 

72 8.73 8.75 8.74 8.32 

Table 4. Comparison of delay for different models 

Based on the evaluation in table 4, figure 6, it can be 

observed that the proposed model is capable of achieving 

4.5% lower delay than 1D CVAE [12], 4.3% lower delay 

than MV TSK FCNN [17], and 4.5% lower delay than DC 

LSTM [25], under different neurological classification 

scenarios. The reason for this enhancement is use of 

continuous parameter optimization based on GWO with 

ensemble classification process.  

 

Figure 7. Comparison of delay for different models 

Due to these optimizations, the proposed model is capable 

of low-error, high-speed, high precision, and better recall 

performance, which makes it useful for a wide variety of 

clinical applications. 

4. Conclusion & future scope 

The proposed model initially extracts a large set of MFCC 

features, which are classified via use of a parameter tuning 

GWO model for different neurological diseases. The 

proposed model uses a combination of Naïve Bayes, 1D 

CNN, and Support Vector Machines (SVMs) in order to 

optimize its internal classification performance. This 

performance was evaluated for Epilepsy, Seizures, 

Amyotrophic Lateral Sclerosis, Alzheimer's Disease, 

Dementia, and Parkinson's Disease types. Based on this 

evaluation, it was observed that the proposed model is 

capable of achieving 3.5% higher accuracy than 1D CVAE 

[12], 3.2% higher accuracy than MV TSK FCNN [17], and 

5.5% higher accuracy than DC LSTM [25], it was also 

observed that the proposed model showcased 2.5% higher 

precision than 1D CVAE [12], 4.5% higher precision than 

MV TSK FCNN [17], and 3.5% higher precision than DC 

LSTM [25], under different neurological classification 

scenarios. The reason for this enhancement is use of 

continuous parameter optimization based on GWO with 

ensemble classification process. Similar performance was 

observed for recall & delay measures, which makes the 

model highly scalable for a wide variety of real-time 

applications. In future, the model must be validated for 

other large-scale datasets, and can be extended via use of 

multiple bioinspired computing models via parameter 

fusion process. Moreover, the model’s performance can 

also be improved via integration of multiple deep learning 

models, that will assist in high-density feature extraction 

& classification under different use cases. 
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