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Abstract

Let G be a connected graph. For M < V(G), for each v e V(G) the monophonic resolving
set ismr (v/M) = (dm(v, v1),dym (v, v,) ...dpy (v, vk)), where M = {v;,v, ....v}. M is said to
be a monophonic resolving set of G, if mr(v/M) # mr(u/M) for every u,v € V(G), where
u # v. The minimum cardinality of a monophonic resolving set is called the monophonic
dimension of G. It is denoted by mdim(G). A set M € V(G) is said to be a monophonic
resolving dominating set of G. If G is both a monophonic resolving set and a dominating set of
G.The minimum cardinality of a monophonic resolving dominating set of G is the monophonic
resolving domination number of G and is denoted by y,,4im (G). Any monophonic resolving set
of cardinality y,,4im (G) is called a y,,4im- Set of G. In this article, the monophonic domination
dimension number of some standard graphs are determined.
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1. Introduction

Let G = (V,E) be asimple undirected connected graph. The order and size of G are
denoted by n and m respectively. For basic graph theoretical terminology, we refer [1]. The
length of the shortest u — v path in G is the distance d(u, v) between vertices u and v in a
connected graph G. A u — v path with length d (u, v) is referred to as an u — v geodesic. For
basic graph theoretic terminology, we refer [1]. Let W = {wy, wy,...,wy} < V (G) be an
ordered setand v € V (G). The representation r(v/W) of v with respect to W is the k-tuple
(d(v, wy),d(v, wy),...,d(v, Wk))- Then W is called a resolving set if different vertices of G
have different representations with respect to W. A resolving set of minimum number of
elements is called a basis for G and the cardinality of the basis is known as the metric dimension

of G, represented by dim(G). These concepts were studied in [2].

A path P’s chord is an edge that connects two of its non-adjacent vertices. If a path
between two vertices u and v in a connected graph G lacks chords, it is referred to as
monophonic path. The length of the longest u — v monophonic path in G is the monophonic
distance d,, (u, v) between uand v. These concepts were studied in [3-,11. 13, 15, 21, 22, 24]. In
this article, we study a new metric dimension called the monophonic metric dimension of a
graph. For M = {v,v, ....v} € V(G)for each v eV the representation mr(v/W) of v with
respect to W is the k-tuple mr (v/M) = (d,, (v, v1), d (v, V) ... dyn (v, 1)). M is said to be a
monophonic resolving set of G, if mr(v/M) # mr(u/M) for every u,v € V, where u # v. The
minimum cardinality of a monophonic resolving set is called the monophonic dimension of G. It
is denoted by mdim(G). Any monophonic resolving set of cardinality mdim(G) is called
mdim-set of G.This concept was introduced and studied in [23]. The dominating set of a graph G
is a set S of vertices G such that every vertex not in S is adjacent to a vertex in S. The
domination number of G is denoted by y(G) is the minimum size of a dominating set. These
concepts were studied in [6, 10, 12, 14, 16, 17, 19, 20]

2. The Monophonic Domination Dimension Number of a Graph
Definition.2.1. Let G be a connected graph. A set M € V(G) is said to be a monophonic

resolving dominating set of G if G is both a monophonic resolving set and a dominating set of G.
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The minimum cardinality of a monophonic resolving dominating set of G is the monophonic

resolving domination number of G and is denoted by y,,,4im (G). Any monophonic resolving set

of cardinality ¥,,4im (G) is called a ¥,,4im- Set of G.

Example.2.2 For the graph G is given in Figure 1, M; = {v;, v,} is the unique y-set of G, which

is not a resolving set of G and SO ¥,,4im (G) = 3. Let M, = {v,, v3, v, }.Then

V4 V2 Va
. -
- \Y
Figure 1

mr(vl/MZ) = (1,4,1),mr(v2/M2) = (0'1'4)1 mT'(U3/M2) = (1,0,3),
mr(v,/M;) = (2,1,4),...mr(vs/M,) = (4,1,4), mr(ve/M,) = (3,4,1),

mr(v,/M,) = (4,3,0). Since each representation are distinct, M, is a monophonic resolving set
of G. Also M, is a dominating set of G. Hence M, is a monophonic resolving dominating set of G
so that y,,q0im (G) = 3. |

Theorem.2.3.For a star graph G = K; ,—4 (n = 3). Then y,4im (G) =n — 1.

Proof. Let M = {v,,v,,..v,,_»}, Then

mr(x/M) = (0,1,1, ...,1,1), mr(v, /M) = (1,0,2, ...,2,2),mr(v, /M) = (1,2,0, ... 2,2),
mr(vs/M) = (1,2,2,0, ...2,2),...mr(v,_,/M) = (1,2, ....,0,2), mr(v,_y /M) = (1,2, ....,2,2).
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Since each representation are distinct, M is monophonic resolving set of G. Also M is a

dominating set of G. Hence M is a monophonic resolving dominating set of G so that and so
Ymaim(G) <n—1. We prove that y,4m(G) =n—1 .0n the contrary suppose that
Ymaim(G) <n — 2. Then there exist a y,,qim- Set |M'| such that |[M'| <n — 2. Then M’ is

neither a domination set nor a monophonic resolving set of G, which is a contradiction. Therefore

Ymaim(G) =n—1. =

Theorem.2.4. For the complete bipartite graph ¢ = K, s (2 <7 <5), Vimaim(G) =1 +s5 — 2.
Proof. Let X = {xq, x5, ..., x,.} and y = {y;, y2, ..., ¥s} be the two bipartite sets of G.

Let M = {x1,%5,..%_1} U {y1,¥2, ..., Vs_1}. Then

mr(x, /M) = (0, 2,2,...,2,1,1,...,1), mr(x, /M) = (2,0,2,...,2,1,1, ...,1),

mr(xs/M) = (2,2,0,...,21,1,...,1),..., mr(x,_4 /M) = ( 2,2,..2,0,1,1, ...,1),

mr(x. /M) = (2,2,2,..,2,1,1,...,1), mr(y; /M) = (1,1,1, ...,0,2,2, ...,2),

mr(y,/M) = (1,1, ...,1,2,0,2, ...,2),mr(ys /M) = (1,1, ...,1,2,2,0, ...,2),...,

mr(y,_,/M) = (1,1,..,1,2,2,..,0), mr(y, /M) = (1,1, ...,1,2,2, ...,2).

Since each representation are distinct, M is monophonic resolving set. Since the vertices x, and
ys are dominated by at least one element of M, M is a dominating set of G.Therefore M is a
monophonic resolving dominating set of G and SO y,,4im(G) <7 +s— 2 .We prove that
Ymaim(G) = r + s — 2.0n the contrary suppose that ¥,,4im (G) < r + s — 3. Then there exists a

Ymaim (G)-set M' such that |[M'| < r + s — 3. Then there exists at least three elements

u,v,w € V(G) such that u, v,w ¢ M'.Without loss of generality, let us assume that u, v ¢ X. Let
u=x_,; and v=x, .Then mr(u/M)=mr(v/M") = (2,2,..,2,1,1,...,1). Which is a

contradiction. Therefore yqim(G) =1 +s — 2. [
Theorem.2.5.For a fan graph G = K; + P,_; (n = 5).Then ¥qim (G) = 2.
Proof. Let V(K;) = x and V(P,,_1) = {vy,V,..,Vp_1}. Let M = {x, v;}.Then
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mr(x/M) = (0,1),mr(v,/M) = (1,0),mr(vy,/M) = (1,1), mr(vs/M) = (1,2),

mr(vy/M) = (1,3),...mr(v,_,/M) = ( 1,n— 2).

Since each representations are distinct, M is a monophonic resolving set of G. Since x is a

universal vertices of G and x € M, M is a dominating set of G. Hence M is a monophonic

resolving dominating set of G. Therefore y,,,4im (G) = 2. |
2forn=>5
Theorem.2.6. For a Wheel graph G = K; + C,,_; (n = 5). Then ¥,naim(G) = {3 forn>6

Proof. Let V(K;) =x and V(C,-1) = {v1,v5,..,Vpn_1}. FOr n =5 .Let M = (v,v,) .Then
mr(x/M) = (1,1),mr(v,/M) = (0,1), mr(v,/M) = (1,0), mr(vs/M) = (2,1), ... mr(v,_,/
M) = ( 1,2). Since each representations are distinct, M is a monophonic resolving set of G.
Since x is a universal vertices of G and x € M, M is a dominating set of G. Hence M is a

monophonic resolving dominating set of G. Therefore y,,4im(G) = 2.

Let n > 6. It is easily verified that no two element subset of V(G) is not a monophonic

resolving dominating set of G, and s0 ¥,,4im (G) = 3.
Let M; = {x, vy, v,}.Then mr(x/M;) = (0,1,1), mr(v,/M;) = (1,0,1),

mr(vy,/M;) = (1,1,0), mr(vs/M;) = (1,n — 3,1),mr(vy,/M;) = (1,n — 4,n — 3), mr(vs/
M) =A,n-3,n—-4),...mr(v,_,/M;) =(1, 1,n—3).

Since each representations are distinct, M; is a monophonic resolving set of G. Since x is a
universal vertices of G, and x € M;. M, is a monophonic resolving dominating set of G. Hence

M, is a monophonic resolving dominating set of G.Therefore y,,4im(G) = 3. [

g ifn = 0(mod 3)
Theorem.2.7 For the path G = B,(n = 4), Then v,,4im(G) =
E] Otherwise

Proof. Let V(B,) = {v4, vy, V3, ..., U },We have the following cases

Case (i) Let n = 0(mod 3). Let n = 3k, k = 3.Then M = {v,, vs, ..., V3,1 } IS @ dominating set

of G,
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mr(v, /M) = (14,7, ...,3k — 2),mr(v, /M) = (0,3,6, ...,3k — 3),

mr(vs/M) = (1,2,5, ...,3k — 4), mr(v, /M) = (2,1,4, ...,3k — 5),
mr(vs/M) = (3,0,3, ...,3k — 6), mr(ve/M) = (4,1,2, ..., 3k — 7),
mr(v,/M) = (5,2,1,...,3k — 8), mr(vg/M) = (6,3,0,...,3k — 9),

mr(vy/M) = (7,41 ...,3k — 10),..., mr(v3;_,/M) = (3k— 5,3k — 8,3k — 11, ...,1,4),
mr(vs_3/M) = (3k — 4,3k — 7,3k — 10, ...,2,5), mr(vsy_, /M) = (3k — 3,3k — 6,3k —
9,..,3,6)mr(vs,_,/M) = 3k — 2,3k — 5,3k — 8, ... ,4,7).

Since each representations are distinct, M is a monophonic resolving set of G. Also M is a

dominating set of G. Hence M is a monophonic resolving dominating set of G and so
Ymaim(G) < g We prove that ¥mgim(G) = % .On the contrary suppose that ¥,,4im (G) < g —1.
Then there exist @ y,,qim-Set M’ such that |[M'| < % — 1.Then M’ is not a dominating set of G,

n

which is a contradiction. Therefore y,,4im(G) = 3

Case(ii) Letn = 1(mod 3). Letn = 3k + 1,k = 3.Then M = {v,, vs, Vg, V19 .., V3 }
mr(vy /M) = (1,4,7,9 ...,3k — 2,3k), mr(v,/M) = (0,3,6,8, ...,3k — 3,3k — 1),

mr(vs/M) = (1,2,5,7 ...,3k — 4,3k — 2), mr(v,/M) = (2,1,4,6 ...,3k — 5,3k — 3),

mr(vs/M) = (3,0,3,5, ...,3k — 6,3k — 4),..., mr(v3;_4/M) = (3k— 5,3k — 7,3k — 8,3k —
5,..4,2,1,4) mr(vsx_s/M) = (3k — 6,3k — 8,3k — 7,3k — 4, ...,5,2,1,3),

mr(Vsp_o /M) = (3k — 7,3k — 9,3k — 6,3k — 3, ...,2,0,3,6) , mr(vs_1 /M) = (3k — 8,3k —
10,3k — 5,3k — 2, ... 1,1,4,7), mr (vs; /M) = (3k — 9,3k — 11,3k — 4,3k — 1,...0,2,5,8)

Since each representations are distinct, M is a monophonic resolving set of G. Also M is a

dominating set of G. Hence M is a monophonic resolving dominating set of G so that

Ymaim(G) < E].We prove that ¥maim(G) = E] .On the contrary suppose that
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Ymaim(G) < E] — 1.Then there exist a ¥,,q;m-set M’ such that [M'| < E] — 1.Then M’ is not a

dominating set of G,which is a contradiction. Therefore yqim(G) = E]
Case(iii) Let n = 2(mod 3). Letn = 3k + 2,k = 1.Then M = {v,, vg, Vg, V11 .., V3k—1}
mr(v, /M) = (1,4,7,10 ...,3k — 2),mr(v,/M) = (0,3,6,9, ...,3k — 3),
mr(vy/M) = (1,2,5,8...,3k — 4), mr(v,/M) = (2,1,4,7, ...,3k — 5),
mr(vs/M) = (3,0,3,6,...,3k — 6), mr(ve/M) = (4,1,2,5...,3k = 7),
mr(v, /M) = (5,2,1,4 ...,3k — 8), mr(vg/M) = (6,3,0,3 ...,3k — 9),
mr(vy/M) = (7,4,1,2, ...,3k — 10), mr(v,, /M) = (8,5,2,1, ...,3k — 11),
mr(vy, /M) = (9,6,3,0, ...,.3k — 12),....,
mr(vs_s/M) = (3k—4,3k—7,3k— 8,3k -5, ...4,2,1,4),
mr(vag_a/M) = (3k — 3,3k — 6,3k — 9,3k — 6, ... 3,0,3,6),
mr(vag_s/M) = (3k — 2,3k — 5,3k — 10,3k — 7, ...,2,1,4,7),
mr(vag_,/M) = (3k — 1,3k — 4,3k — 11,3k — 8, ...,1,2,5,8),
mr(vag_./M) = (3k,3k — 3,3k — 12,3k — 9, ...,0,3,6,9),
mr(vs /M) = 3k — 9,3k — 11,3k — 4,3k — 1, ...0,2,5,8).

Since each representations are distinct, M is a monophonic resolving set of G. Also M is a

dominating set of G. Hence M is a monophonic resolving dominating set of G so that

Ymaim(G) < E] We prove that ,,qim(G) = E] .On the contrary suppose that

Ymdim (G) < E] — 1. Then there exist a ¥,,qim-Set M’ such that [M'| < E] — 1.Then M' isnot a

dominating set of G,which is a contradiction. Therefore y,,4im(G) = E] [
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2 ifn € {3,4,5)
z if n = 0(mod 3)

Theorem.2.8 For the cycle graph G = C,(n = 3), Then Yaim(G){ 3 M™= .
E] Otherwise

Proof. Let C,, be {vy,v,,v5, ..., vy, v} ifn=3.

Ifn=4,then M = {v,,v,,v3}iSa Vmaim- St of G so that y,4im(G) = 2.
Ifn=>5,then M = {v,,v;,v,}iSa Ymaim-Set of G so that y,,4im (G) = 2.
For n > 6, we consider three cases

Case (i) Let n =0(mod3). n=3k,k=>3. Let M; = {vy, V4, ..., V3_2, U3} .Then M, is a

dominating set of G. To prove M, is a monophonic resolving set of G.

mr(v,/M;) = (0,6,6, ...,3k — 3),mr(v,/M;) = (1,7,5, ...,3k — 4),

mr(vy/M,) = (7,1,5,...,3k — 4), mr(v,/M;) = (6,0,6, ...,3k — 3),

mr(vs/M,) = (5,1,7,...,3k — 2), ..., mr(vsx_3/M;) = (3k— 83k — 2,3k — 4,...1,7,5),
mr(vap_y/M;) = (3k — 9,3k — 3,3k — 3,...0,6,6),

mr(va,_1/M;) = (3k — 8,3k — 4,3k — 2, ...1,5,7),

mr(vs, /My) = 3k — 2,3k — 4,3k — 8, ...,7,5,1).

Since each representations are distinct, M, is a monophonic resolving set of G. Hence M;is a

monophonic resolving dominating set of G and 0 ¥,,4im (G) < g We prove that y,,4im (G) = g

.0On the contrary suppose that ¥ yqim(G) < g— 1. Then there exist a ¥,,4im-S€t M;' such that

M| < g — 1.Then M; is not a dominating set of G, which is a contradiction. Therefore

deim(G) = %

Case(ii) Let n =1(mod 3). Let n =3k + 1,k = 3.Then M, = {vy, vy, ..., Vgk—2, U341} - Then

M, is a dominating set of G.To prove M, is a monophonic resolving set of G. Then
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mr(v,/M,) = (0,7,6,1, ...,3k — 8), mr(v,/M,) = (1,8,5,8, ...,3k — 1),

mr(vs/M,) = (8,1,6,7 ...,3k — 2), mr(v,/M,) = (7,0,7,6, ...,3k — 3),

mr(vs/M,) = (6,1,8,5, ...,3k — 4), ..., mr(vs;_3/M,) = (3k — 3,3k — 8,3k — 1,3k —
4,..6,1,8,5),mr(vsy_,/M,) = (3k — 2,3k — 9,3k — 2,3k — 3, ...,7,0,7,6),

mr(vsg_1/M;) = 3k — 1,3k — 8,3k — 3,3k — 2,...8,1,6,7), mr(vs, /M;) = (3k — 8,3k —
1,3k — 43k — 1,..1,8,5,8), mr(vsps1/M,) = (3k — 9,3k — 2,3k — 3,3k — 8, ...,0,7,6,1).

Since each representations are distinct, M, is a monophonic resolving set of G. Also M is a

dominating set of G.Hence M, is a monophonic resolving dominating set of G .Therefore

Ymaim(G) < E] We prove that y,qim(G) = E] .0n the contrary suppose that y,,qim(G) <
E] — 1.Then there exist a ¥maim(G)-set M, such that |M,'| < E] —1. Then M’ is not a

dominating set of G, which is a contradiction. Therefore y,,4im(G) = E]

Case (iii) Letn = 2(mod 3). Letn = 3k + 2,k = 3.Then M3 = {vy, vy, ..., V3x_2, V3k41}-Then

M, is a dominating set of G.To prove M, is a monophonic resolving set of G. Then
mr(vy/M3) = (0,8,6,9, ...,3k — 3,3k), mr(v,/Ms) = (1,9,6,8, ...,3k — 3,3k — 1),
mr(vs/Ms) = (9,1,7,7, ...,3k — 2,3k — 2), mr(v,/Ms) = (8,0,86, ...,3k — 1,3k — 3),

mr(vs/Ms) = (7,1,9,6, ...,3k, 3k — 3), ..., mr(vax_s/Ms) = (3k — 3,3k — 8,3k — 1,3k —
4,..6,1,8,5),mr(vs_,/Ms) = (3k — 1,0,3k — 1,3k — 3, ...,8,0,8,6),

mr(vs,_,/M;) = 3k,1,3k — 2,3k — 2,...9,1,7,7), mr(vs, /M3) = (1,3k, 3k — 3,3k —
1,,..1,9,6,8), mr(vsgs1/Ms) = (0,3k — 1,3k — 3,3k, ...,0,8,6,9).

mr(Vagsa/Ms) = (1,3k — 2,3k — 2,1, ...,1,7,7,1).

Since each representations are distinct, M, is a monophonic resolving set of G.Also M is a

dominating set of G.Hence M, is a monophonic resolving dominating set of G .Therefore

VYmaim(G) < E] We prove that ypmaim(G) = E] .On the contrary suppose that ¥,,qim(G) <
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E] — 1.Then there exist a ¥maim(G)-set M3’ such that |M;'| < E] —1. Then M’ is not a

dominating set of G, which is a contradiction. Therefore ¥4im(G) = E] |
Theorem.2.9. For the Alternate triangular cycle graph G = A(Cs1), Ymaim(G) = 3.

Proof. An alternate triangular cycle A(C,,,) is obtained from even cycle
Con = {V1,Uq, V3, Uy, ..., Uy, Uy} DY jOiNing v; and u; to a new vertex w;.That is every alternate

edge of a cycle is replaced by C5. Let n = 4, M = {v,, vy, v,}.Then mr(v, /M) = (0,1,1),
mr(v,/M) = (1,0,n — 2), mr(vs/M) = (n — 2,1,1), mr(v,/M) = (1,n — 2,0),

mr(u, /M) = (1,1,n — 1),mr(u,/M) = (n — 1,n — 1,1). Since each representations are
distinct,M is a monophonic resolving set of G. Also M is a dominating set of G. Hence M is a
monophonic resolving dominating set of Gand S0 ¥4im (G) < 3.We have to prove that

Ymaim(G) = 3.Suppose that y,,4im(G) < 2.Then there exist a y,,qim-Set M’ such that
|[M'| < 2.Then M' is not a dominating set of G.Which is a contradiction. There fore
Ymaim(G) = 3.

Letn > 6 and let M; = {uy, uy, us ... u,}, Then
mr(vy/M;)=(1,n—2,n—1,..,.n— 1) mr(v,/M;)) =(1,n—1,n—-2,..,n—2),
mr(vs/ M) =n—-11,n—-2,...,.n—2), mr(vy/M;) = (n—-2,1,n—-1,...,n—1),...,
mr(v,_4/M;)) =(n-2,n-11,..,1), mr(v,/M;) =(n—1,n-2,1,..,1),
mr(u,;/M;))=0,n—-1,n-1,..,n—1), mr(u,/M;) =(n—-10,n—-1,..,n—1),
mr(uz/M;) = (n—1,n-10,..,0),..., mr(u,_,/M;))=(n—10n—-1,...,n—1),
mr(u,/M;) = (n—1,n—-1,0,...,0).

Since each representations are distinct,M; is a monophonic resolving set of G. Also M, is a
dominating set of G. Hence M; is a monophonic resolving dominating set of G and so

Ymdim(G) <n We have to prove that y;,qim(G) =n. On the contrary suppose that
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Ymaim(G) < n — 1.Then there exist a y,,4im-Set M; such that |[M;'| < n — 1.Then M; is not a

dominating set of G, which is a contradiction. Therefore y,,,4im(G) = n.

|
Theorem.2.10 For the double wheel graph G = DW,,, (n = 4), Ymaim (G) = 3.

Proof. A double wheel graph DW,, of size n can be composed of 2C,, + K;. It consists of two

cycles of size n where vertices of two cycles are all connected to a central vertex.

Let M = {x, vy, V5, Uy, Uy}, n = 4.Then

mr(x/M) = (0,1,1,1,1), mr(v,/M) = (1,0,1,n — 2,n — 2),

mr(v,/M) = (1,1,0,n—2,n—2), mr(vs/M) = (1,n—-2,1,n—2,n — 2), ...,
mr(v,_,/M)=(1,n—-21,n—2,n—2), mr(v,/M) =(1,1,n—2,n—2,n—2),
mr(u, /M) = (1,n—2,n—-2,0,1), mr(u,/M) = (1,n — 2,n — 2,1,0),

mr(us/M) =(1,n—-2,n—2,n—-21),..mr(u,_,/M)=>0A,n—-2,n—2,n—2,1),
mr(u,/M) =(1,n—2,n—2,1,n — 2).

Since each representations are distinct,M is a monophonic resolving set of G. Also M is a
dominating set of G. Hence M is a monophonic resolving dominating set of Gand so

Ymaim(G) < 5.We have to prove that y,,4im(G) = 5.0n the contrary suppose that

Ymaim(G) = 4.Then there exist a ¥,,4im-Set M’ such that [M'| < 4.Then M’ is a monophonic
resolving set, but not a dominating set, which is a contradiction. Next assume that x € M'.Then
there exist two distinct vertices y, z € V(C,,—1), such that mr(us /M) = mr(u,/M). Which is a

contradiction. Therefore y,,4im(G) = 5. |
Theorem.2.11. For the crown graph G = H,,,, (n = 5). Then y;4im (G) =7+ 5 — 2.

Proof. An undirected graph with 2n vertices in the two sets {v, vy, ..., v} and  {uq, u,, ..., ug}

and with an edge from u; to v;, whenever i # j.

Let X = {v,vy, ..., v} and Y = {uy, u,, ..., ug} be the two bipartite sets of G.
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Let M = {vy, vy ..., Vp_q, Ug, Uy« Us_1 }. TheN mr(v, /M) = (0,2, ...,3,1,1, ..., 1),

mr(v,/M) = (2,0,2,...,1,1, ..., 1) mr(vs /M) = (2,2,0, ...,2,1,1, ...,1),

mr(v, /M) = (2,2,2,0,...,2,1,1,..,1),... mr(v,_y /M) = ( 2,2,...2,0,1,1, ...,1),
mr(v./M) = (2,2,2,...,2,1,1, ..., 1) mr(u, /M) = (3,1,1,...1,0,2,2, ...,2),
mr(uy,/M) = (1,1, ...,1,2,0, ...,2),mr(us /M) = (1,1, ...,1,2,2,0, ...,2),
mr(u,/M) = (1,1, ...,1,2,2,2,0, ...,2),...mr(us,_, /M) = (1,1, ...,1,2,2, ... 2,0),
mr(us/M) = (1,1, ...,1,2,2, ...,2).

Hence it follows that M is a monophonic resolving set of G. Since the vertices v, and ug are
dominated by at least one element of M, M is a dominating set of G .Therefore M is a
monophonic resolving dominating set of G ,and SO ypagim(G) <71 +s—2.We prove that
Ymaim(G) = 17 + s — 2.0n the contrary suppose that y,,,4im(G) < r + s — 3. Then there exist a
Ymaim(G)-Set M' such that |[M'| <r+s—3.1f M' € X or Y. Then M’ is not a dominating set of
G.Therefore M’ € X U Y.Then there existsu € X and v € Y with u,v € M’, such that mr(u /
M") = mr(v /M), which is a contradiction. Therefore y,,,4im(G) =1 + s — 2.
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