
Enhanced affinity aware Loadbalancing Algorithm Section A-Research paper

2234 Eur. Chem. Bull. 2023,12(Special Issue 5), 2234-2242

 ENHANCED AFFINITY AWARE

LOADBALANCING ALGORITHM

Varsha Thakur 1, Sunita Kushwaha 2

1Computer Science Govt NPG Science College,Raipur, India

2Computer Science, MATS University, Raipur,India

Article History: Received: 12.05.2023 Revised: 25.05.2023 Accepted: 05.06.2023

Abstract

Parallel and distributed computing is in vogue as it proffers an approach to prevail over the

limitations inflicted by the sequential computers. The issue is to dispense tasks in such a way

that load among processors and resources should be in egalitarianism. Load balancing means

providing optimal load to each processor in a multiple processor environment for which task

is migrated from the over loaded processor to under loaded processor. Load balancing

envisions by enhancing the design of scheduling process. This conveys the indispensability and

reflects the main idea behind the work. In this work a new algorithm is designed in which

affinity of task is taken into consideration. Simulation results show that most of the time newly

proposed algorithm has better performance than other algorithms in terms of speedup, schedule

length, efficiency, throughput, average utilization, unbalance parameter and load balance

parameter.

Keywords: Load balancing; Affinity; Multiprocessor; Schedule Length; Parallel Computing

1. Introduction

 Parallel computing conceding that

multiple processors acclimatized

simultaneously to execute a program.

Parallel computing makes use of

concurrently running processes that are an

adherent of larger computation.

Multifarious hardware and software

gauntlets still exist while working with the

parallel and distributed computing like

Reliability, Scalability, Heterogeneity,

Security, Job Scheduling, Synchronization,

Load balancing and Communication delay

[1-2]. Assortment of techniques and

methodologies for assigning tasks is

substantially reported in the literature

survey. These techniques can be Task

assignment approach, in which each task is

scheduled to suitable processor so as to

improve the performance, Load balancing

approach which tries to equalize the load

among processors by distributing each task

among the processors and Load sharing

approach in which the tasks are distributed

in a way which simply attempts to assure

that no processor should be idle.

2. Load Balancing

Load balancing resettled the work from the

over loaded processor to under loaded

processor [3-4]. The CPU loads can

escalate as there is increase in a number of

processes [5]. In the design of load

balancing algorithms an appropriate load

index play a pivot role. A load index

ISSN 2063-5346

Enhanced affinity aware Loadbalancing Algorithm Section A-Research paper

2235 Eur. Chem. Bull. 2023,12(Special Issue 5), 2234-2242

speculate the performance of a task. Load

indexes can be measured by CPU length,

memory availability , the context-switch

rate, the system call rate, and CPU

utilization [6]. Processor queue length,

execution time and processes age [7-8] .

3. Problem Statement

The random arrival of a task in parallel

architecture can cause some system to be

heavily loaded while others may be idle or

lightly loaded. Load redistribution [9]

improves performance by transferring

tasks. As long as there have been Parallel

Architecture systems in which there are

multiple processors, multiple tasks and

various resources, there will be a basic

problem of assigning tasks and resources to

the processors by which equipoise of load

should be maintained. The basic objective

of load balancing can be expressed as

follows: Let τ be the set of tasks {τ1, τ2, τ3,

τ4,................ ,τm} and ƥ be the set of

processors {ƥ1, ƥ2, ƥ3 , ƥ4........................., ƥn

} on which elements of τ may be executed.

Let a(j) be the set of tasks assigned to ƥj

processor and TLj is total execution time

required by a processor ƥj to finish the

entire task in a(j). Hence, TLj =∑ tijn
j=1

where tij is ith task on jth processor, ti € a(j)

for all task in a(j). TLj defined as a load on

node ƥj where TLj is total load on jth

processor. “Obtain a redistribution of tasks

to processors in such a way that each

processor contains an approximately equal

amount of Load”. The goal of load

balancing problem is to find a redistribution

of the tasks that minimizes the maximum

load. A redistribution that balances the load

of the processors will typically reduce the

execution time and increase the overall

performance. To combat the problem of

Load balancing in parallel and distributed

computing various algorithms have been

proposed. Most of the Load balancing

algorithms proposed are for tasks without

considering properties of task like priority,

affinity, I/O intensive or CPU intensive and

dependency constraints. In order to deal

with the aforesaid limitations, and to

provide best load balancing solutions, some

improved versions is needed. In the present

work, affinity aware load balancing

algorithm is proposed. Affinity helps to

determine which tasks should be migrated

from a heavily loaded processor to idle or

lightly loaded processors. When affinity is

contemplate in load balancing for data

requirements, time and network bandwidth

will consume less in order to deliver data

that each task needed. Locality and load

balancing are two competing goals in a

parallel architecture [10].

4. Related Algorithm

After reviewing various Load balancing

algorithms, some of the Load balancing

algorithms are implemented in parallel

architecture of processors.

4.1. Two state load balancing

 In this Load balancing, a processor

accepts new processes only if it is below

the threshold value transfer the task to

another node if is above the threshold

value. [11].

4.2. Three state load balancing

This algorithm is based on two thershold

value lower thershold and upper thershold.

[12].

4.3. Four state load balancing

This algorithm is based on four states

.There is a term called benefit function

which used for decisiding the transfer of

load. Load (L) is transferred only when load

is greater than benefit function [12,13].

4.4. Cost Effective load balancing

The algorithm consists of three phases the

information gathering phase, in which

information is gathered about number of

idle processors and load of each

Enhanced affinity aware Loadbalancing Algorithm Section A-Research paper

2236 Eur. Chem. Bull. 2023,12(Special Issue 5), 2234-2242

processors.Then the decision phase in this

decision is taken whether migration of task

is cost effective or not. After this if saving

is greater than cost redistribution phase is

executed. In this phase, average workload

and sum of active workload are calculated.

Also, assignment policy is obtained [14-

15].

4.5 Hierarchical load balancing

Processors are arranged in hierarchal

organization. If parent load is overloaded it

transfer task to children. If children node is

not available then it transfers the load to its

parent node [16].

5. Proposed Algorithm (EALBA)

In this paper, a new Enhanced affinity

aware load balancing algorithm on parallel

architecture of processors is proposed. If

data already present in cache memory then

transferring tthat related task is more

efficient in case of shared memory

multiprocessor [17]. In the proposed

algorithm affinity helps for selecting task

for transering.

5.1 Basic Assumptions

Non Preemptive Independent Tasks are

generated randomly. Static deterministic

approach has been considered, Affinity of

task to particular processor is assumed

some data of that task already exists in

cache of that processor.

Figure 1: System without Load balance [6]

5.2 Algorithm

 EALBA: This algorithm tries to balance

the load among processors. Let ƥ1, ƥ2, ƥ3, ƥ4,

,......................... , ƥm are the processors and

τ1, τ2, τ3, τ4,,................ , τn are the of

processes or tasks. Tasks are created, input

the number of tasks a[i] for each processor

where 1⩽i⩽n. Assign the task randomly to

the processor. Compute execution time as

tl1 = (∑ P [1]. t[1]. e[1]𝑚𝑎𝑥𝑖𝑛𝑠𝑡1
𝑖=1) {

1 ≤ i ≤ maxinst1}. TL[m] = tl1 +

tl2…………+ tla1. TL[1] =∑ tl[i]𝑎1
𝑖=1

where 1 ≤ i ≤ a1. Double Threshold is

calculated as multiplying some constant

toaverage load (lower threshold is Φ1 and

upper threshold is Φ2). Determine

overloaded processor which has no affinity

with the corresponding processor, only

these processes can be transferred. Affinity

less transferable process is taken in

decreasing order of their execution times

for transfer purpose. Let δ number of

processes are transferred and number of

processes present in maximum overloaded

processor is Cƥi Then, ƥi  Cƥi - δ, C ƥk

 C ƥk + δ . TLmax1  TLmax1 - ұ ,

TLmin1 TLmin1 + ұ. Repeat the steps

for other over loaded processors Till

max*(op,up) and Calculate performance

parameters.

5.3. Complexity

. The complexity of an algorithm

calculated in terms the time and

complexity [18-19]. Time is major concern

in our algorithm. So we have calculated

time complexity. Problems can be

categories as P class and NP class. Problem

of P class has following characteristics:

Solved in polynomial time, Solved by a

deterministic algorithm. More specifically,

they are problems that can be solved in time

O(nk) for some constant k, where n is the

size of the input to the problem [20]. The

class NP consists of those problems that are

“verifiable” in polynomial time. Verifiable

means we are somehow given a

“certificate” of a solution and then we could

Enhanced affinity aware Loadbalancing Algorithm Section A-Research paper

2237 Eur. Chem. Bull. 2023,12(Special Issue 5), 2234-2242

verify that the certificate is correct in time

polynomial in the size of the input to the

problem [19]. If NP class problem solved

by deterministic Turing Machine then

exponential time is taken and if solved by a

non-deterministic Turing machine then

polynomial time is taken [19]. That is both

the conditions are practically difficult to

achieve.[20]. Example SAT is NP-

complete. NP-complete problems are the

subset of NP-hard problems. Example

Circuit Satisfiability is NP-hard. The circuit

satisfiability problem is the circuit analogue

of SAT. Given a Boolean circuit C, we have

to find an assignment to the variables that

causes the circuit to output 1 [21,22].

O (EALBA) = 7* O(1) + 6*O(m)+

O(m*n)+O(n2). So, O(EALBA) = O(n2).

 Where n is the number of processes. Best

case that is the minimum time is taken when

the number of processes and the number of

processors equal to one.Therefore, time

complexity of best case is O(1). If the

number of processors is greater than

number of processes then, the complexity

will be O(m*n). Minimizing makespan is

NP complete. But if we apply certain

assumptions like limiting number of

migration to a particular value then the

problem of minimizing a makespan comes

under the class of P class from NP class. By

applying the limited number of migrations

NPproblem can be transformed as P

problems [23]. Since we have used

deterministic algorithm in which steps are

uniquely defined according to the definition

of P-class problem. Further, the minimizing

makespan is NP complete but applying the

assumption of migrating limit minimize the

makespan becomes P class.

6. Simulation

To realize the imbalance of load in parallel

architecture of processors algorithms are

implemented in Python (Numpy).

Comparisons of various algorithms are

done. These algorithms are implemented in

Python (Initially implementation was done

using OMP but these algorithms were

showing the effect of parallelism that why

python was selected). The performance of

these load balancing algorithms are

evaluated by considering various

metrics like speedup, throughput,

efficiency, average utilization,

maximum schedule length and

unbalance.

6.1. Performance Parameters

A parallel computing system should be

viewed as a combination of parallel

algorithm and the parallel computer on

which it is implemented [24].

Speedup (Sn): Speedup is a ratio of

execution time before changes and after

changes. Change ≅Improvement ≅

Modification. [24].

Efficiency: While speedup measures how

much faster a program runs on a parallel

computer in comparison to a single

processor. It does not measure whether the

processors in that parallel computer are

being used effectively or not. [24].

Throughput: Throughput is a measure of a

number of tasks/processes that can be

processed per time unit [25].

Schedule Length (Makespan): Schedule

length is the overall execution time of all

processes on all processors. It is also known

as makespan [26].

Average Utilization: Average utilization is

a summation of maximum times taken by

the processors by schedule length is divided

by the number of processors [27].

Unbalance: Unbalance is a maximum

time taken by any processor minus

minimum time taken by any processor

divided by the average time taken by the

processor [28].

Load balancing: Load balancing is the

ratio of scheduling length and average

execution time over all the processors [29].

Enhanced affinity aware Loadbalancing Algorithm Section A-Research paper

2238 Eur. Chem. Bull. 2023,12(Special Issue 5), 2234-2242

6.2 Result Analysis

Performance Improvement

Sno Parameter Without Load

Balancing

With Load Balancing

EALBA

1 Schedule length 147.45 72.81

2 Throughput .171 0.34

3 Average Utilization 42 % 84.03%

4 Load balance Parameter 2.37 0.19

5 Unbalance Parameter 2.37 0.44

6 Speedup - 1.99

7 Efficiency - .33

Table 1 Performance Improvement

Figure 3 Before Applying Load Balancing

Figure 4 After Applying Load Balancing

(EALBA)

Experiments had been done to check the

performance of proposed load balancing

algorithm against some existing load

balancing algorithms for parallel

architecture. Performance of different load

balancing algorithms is also obtained and

compared for varying degree of processors

and processes (tasks). As shown in the

(Figure5-Figure11) increased the number

of processes, keeping the number of

processors fixed and observed the

performance of these load balancing

algorithms. Initially, 8 processes, 12

processes, 16 processes, 20 processes and

30 processes. Similarly we have changed

the number of processors (4, 16, 32, 64) and

fixed no of processes for various cases and

average result was taken as shown in the

Figure 12- Figure 18. Performance metrics

in terms of schedule length, throughput,

speedup, efficiency, average utilization,

load balance parameter and unbalance

parameter have been obtained and their

relative values have been compared for

various load balancing algorithms. From

graphs it is clear that most of the times

newly proposed Affinity Aware Load

Balancing algorithm performs better than

other existing algorithms.

Enhanced affinity aware Loadbalancing Algorithm Section A-Research paper

2239 Eur. Chem. Bull. 2023,12(Special Issue 5), 2234-2242

Figure 5 Result Analysis

0

1

2

8 10 12 16 20 30Sp
e

e
d

u
p

Number of Processes

Speedup vs Processes

2SLBA
4SLBA
HSLBA
CSLBA
TSLBA
TSAALBA

0

0.1

0.2

8 10 12 16 20 30Ef
fi

ci
e

n
cy

Number of Processes

Efficiency vs Processes

2SLBA

4SLBA

HSLBA

CSLBA

TSLBA

0

0.5

1

8 10 12 16 20 30

Th
ro

u
gh

p
u

t

Number of Processes

Throughput vs Processes

2SLBA

4SLBA

HSLBA

CSLBA

TSLBA

TSAALBA

0

0.2

0.4

0.6

0.8

8 10 12 16 20 30

Sc
h

e
d

u
le

 le
n

gt
h

Number of processes

Schedule Length vs Processes

2SLBA

4SLBA

HSLBA

CSLBA

TSLBA

0

1

2

3

4

5

6

8 10 12 16 20 30

U
n

b
al

an
ce

Number of Processes

Unbalance vs Processes

2SLBA

4SLBA

HSLBA

CSLBA

TSLBA

TSAALBA
0

10

20

30

40

50

60

70

8 10 12 16 20 30A
ve

ra
ge

 U
ti

liz
at

io
n

Number of Processes

Averageutilization vs Processes

2SLBA

4SLBA

HSLBA

CSLBA

TSLBA

TSAALBA

0

1

2

8 10 12 16 20 30Sp
e

e
d

u
p

Number of Processes

Speedup vs Processes

2SLBA

4SLBA

0
0.1
0.2
0.3
0.4
0.5
0.6

Average

TWO STATE FOUR STATE HIERAICHAL

COST EFFECTIVE THREE STATE AFFINITY AWARE

Enhanced affinity aware Loadbalancing Algorithm Section A-Research paper

2240 Eur. Chem. Bull. 2023,12(Special Issue 5), 2234-2242

7 Conclusions

As per simulation results most of the time

newly proposed algorithm (EALBA) is

found to work better as compared to other

algorithms namely Two state load

balancing algorithm, Three state load

balancing algorithm, Four state load

balancing algorithm, Hierarchal load

balancing algorithm and Cost effective load

balancing in terms of speedup, schedule

length, efficiency, average utilization,

unbalance parameter and load balance

parameter. If the numbers of overloaded

processors are more then, our proposed

algorithm performs better. Cost effective

load balancing algorithm searches the

available idle processor then it finds the

cost .Then it transfers the load according .If

the number of idle processors is high, cost

effective algorithm performs better. If there

is no idle processor cost effective load

balancing will not work at all. In Four state

loads balancing algorithm load is transfer

only when transferable load is less than the

value returned by a function called benefit

function. Many a times when although

some processors are overloaded but their

transferable load is not more than benefit

function then load is not transferred.

Therefore, Four state load balancing

algorithm fails to work better in many

conditions. Four state load balancing

algorithm perform better in case of

heterogeneous processors. Three state load

balancing algorithm selects the process to

be transferred randomly. Sometimes a

processor which has more affinity with a

particular processor on which it is residing,

because of some reasons like its data being

present in cache memory etc. may also be

selected for transfer. In that case, processes

are also deliberately transferred and then

the result of Three state algorithm is not

better. Hierarchal load balancing algorithm

works on assumption that arrangement of

processors are in hierarchal form.

Performance of Hierarchal load balancing

algorithm is better when child processor of

overloaded processor is least loaded. In two

states Load Balancing algorithm an

overloaded processor will chose any under

loaded processor randomly and transfer

task to under loaded processor. But

sometime it may make under loaded

processor to overloaded processor. Future

of this work includes: In this work, only

independent tasks are considered for load

balancing. In future dependent tasks with

dynamic load balancing may also be taken

up and Thermal aware load balancing

algorithm in multiprocessor is to be

explored. Effective use of energy and

computational resources has become a

matter of serious concern [30] so energy

References

[1] Dande, “Simulation of

Multiprocessor System Scheduling”,

Tampere University of Technology,

Finland, pp. 18, 2011.

[2] J. L. Baer, ”Multiprocessing

Systems”, IEEE transaction on

Computers, vol. c- 25, no. 12, pp.

1271-1277, Dec. 1976.

[3] V. Thakur, S. Kumar, “Perspective

study and analysis of parallel

Architecture”, International journal

of Computer Applications, vol. 148,

pp. 22-25, 2016.

[4] P. K. Sinha, “Distributed Operating

Systems concepts and design”, PHI

Learning Private Limited, 2011, pp.

414, 367, 358,356.

[5] B. R. Vatsala, C.V. Raj, “CPU load–

based countermeasure technique for

intelligent DoS attack targeting

firewalls”, Emerging Research in

Electronics, Computer Science and

Technology, Springer India, pp. 139–

144, 2014.

[6] G. N. Shivaratri, P. Krueger, M.

Singhal, ” Load Distributing for

Locally Distributed Systems”,

Computer, vol.25, pp. 31-44, 1992.

Enhanced affinity aware Loadbalancing Algorithm Section A-Research paper

2241 Eur. Chem. Bull. 2023,12(Special Issue 5), 2234-2242

[7] P. Kanungo, ”Scheduling in

Distributed Computing Environment

Using Dynamic Load Balancing”,

Anchor academic publishing, pp.35,

2016.

[8] P. Kanungo, "Measuring

performance of dynamic load

balancing algorithms in distributed

computing applications",

International Journal of Advanced

Research in Computer and

Communication Engineering, vol. 2,

No. 10, Oct. 2013.

[9] Afzal, S., Kavitha, G. Load balancing

in cloud computing – A hierarchical

taxonomical classification. J Cloud

Comp 8, 22 (2019).

https://doi.org/10.1186/s13677-019-

0146-7

[10] S. W. Keckler, “The Importance of

Locality in Scheduling and Load

Balancing for Multiprocessors,” MIT

concurrent VLSI architecture Memo

61, pp.1- 19, Feb.1994.

[11] R. Alonso, L. L. Cova, “Sharing jobs

among Independently Owned

Processors”, Technical Report CS-

TR-200-88, Dept. of Computer

Science, Princeton University,

Eighths international conference on

distributed computing, pp. 1-17,

Nov.1987.

[12] W. Wang, X. Geng, Q. Wang,

“Design of a dynamic load balancing

model for multiprocessor systems”,

IEEE, pp. 641–643, 2011.

[13] M. Haroon , M. Husain, “Analysis Of

A Dynamic Load Balancing In

Multiprocessor System”,

International Journal of Computer

science Engineering and Information

Technology research, vol.3, no.1,

pp. 143-148, Mar 2013.

[14] J. P. Ahrens and C. D. Hansen, “Cost-

effective data parallel load

balancing”, Technical Report TR-95-

04-02, University of Washington, pp

1- 5, 1995

[15] S.L. Lee, C.T. Yang, S.S. Tseng, C.J.

Tsai, “A cost-effective Scheduling

with load balancing for

multiprocessor systems”, IEEE, vo1.

1, pp. 302–309, 2000.

[16] J. Vladimir, “Load Balancing of

irregular Parallel Applications on

Heterogeneous Computing

environments”, thesis, pp. 93- 100,

2012.

[17] G. Muneeswari, K. L.

Shunmuganathan, “Agent Based

Load Balancing Scheme using

affinity Processor Scheduling for

Multicore Architectures”, vol. 10, no.

8, pp. 12, 2011.

[18] M. S. Squillante, E. D. Lazowska,

"Using processor-cache affinity

information in shared- memory

multiprocessor scheduling", IEEE

Transactions on Parallel and

Distributed Systems, vol. 4, no. 2, pp.

131-143, Apr. 1993.

[19] U. Agrawal,” Data Structure using

C”, S.K. Katria and Sons, pp. 5-6,

2012.

[20] S. Lipschutz, “Data Structure”,

Special Indian Edition, Tata McGraw

Hill, 2006, pp.5.

[21] T.H.Cormen, C.E.Leiserson, R.L

Rivest, and C.Stein, “Introduction to

Algorithms”, Third edition

Cambridge, Mass: MIT Press, 2001,

pp. 850-855.

[22] https://cs.joensuu.fi/pages/whamalai/

daa/npsession.pdf,revisted

3,May.,18.

[23] W. Tian, G. Li, X. Wang, Q. Xiong,

Y. Jiang, “Transforming NP to P: An

Approach to Solve NP Complete

Problems”, arXiv: 1505.00058 [cs], pp.

1-5, Apr. 2015.

[24] V. Rajaraman and C.S.R

Murthy,”Parallel Computers

Architecture And programming”, PHI

learning private limited, seventh

edition, pp.7, 97, 339, 2009.

Enhanced affinity aware Loadbalancing Algorithm Section A-Research paper

2242 Eur. Chem. Bull. 2023,12(Special Issue 5), 2234-2242

[25] J. P. Hayes, Computer Architecture

and Organization, WCB/McGraw-Hill,

Third Edition, 2009, pp.547-548.

[26] J. Cao, G. Bennett, and K. Zhang,

“Direct execution simulation of load

balancing algorithms with real

workload distribution”, Journal of

Systems and Software, vol. 54, no. 3,

pp. 227–237, Nov. 2000.

[27] A.Y. Zomaya, Y.H. Teh,

“Observations on Using Genetic

Algorithms for Dynamic Load-

Balancing”, IEEE Transaction on

Parallel and Distributed systems, vol.

12, no. 9, pp 899-1002, Sep. 2001.

[28] V. Harsora, A.Shah, “A Modified

Genetic Algorithm for Process

Scheduling in Distributed System”,

IJCA Artificial Intelligence

Techniques, pp. 36-40, 2011.

[29] S. Gupta, R. Rajak, G. K. Singh, S.

Jain, “Review of Task Duplication

Based (TDB) Scheduling Algorithms”,

The Smart Computing Review, Feb.

2015.

[30] M. A. Shahid, N. Islam, M. M.

Alam, M. M. Su’ud and S. Musa, "A

Comprehensive Study of Load

Balancing Approaches in the Cloud

Computing Environment and a Novel

Fault Tolerance Approach," in IEEE

Access, vol. 8, pp. 130500-130526,

2020, doi:

10.1109/ACCESS.2020.3009184.

