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1. Introduction

Parimala et.al[3] introduced and studied the notion of nano ideal generalized CI.S.s
in nano ideal topological spaces. Pasunkili Pandian et.al [6],[1] introduced nis,g — CI.
S.s and studied nis,g — Cl. Map., nls,g — Op. Map., nls,g — Cont.Fn. and nls,g —
Irr.Fn. map in nano ideal topological spaces. In this paper, we introduce the concept of
nls,g — Hompsm. and *nls,g — Hompsm. in nano ideal topological spaces and
investigated its relationship with some of the existing Hompsm.s. Further, we have
studied their characteristics.
2. Preliminaries

Definition 2.1 [4] A subset H of a nano topological space (T, V') is said to be nano
semi a — open set (briefly, ns, — Op.S.) set if there exists a na — Op. S. P in I" such
that P € H S n — cl(P) or equivalently if H € n — cl(na — int(P)).
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Definition 2.2 [2] Let (I', V', 7) be a nano ideal topological space with an ideal 7 on T

where V' = 14 (X) and (. )y, be a set operator from g(I") to (I, (¢2(I') the set of all

subsets of I'). Forasubset X c I H, (I, N) ={x €T: G, N H ¢& I, forevery G, €

G, (x)}, where G,, = {G,,: x € G, G, € N} is called the nano local function (briefly,

n — local function) of H with respect to 7 and V. We will simply write 3, for

H(T,N).

Definition 2.3 [6] A subset  of a nano ideal topological space (', M, () is said to be

nano ideal semi o generalized ClI. S. (briefly, nis,g — Cl. S.) if H,, € K whenever

H < K and K is nano semi o — open.

Definition 2.4 [1] Let (I', M, J) and (V, M, J") be nano ideal topological spaces. Then

(i) The mapping n: (I M, J) = (W, M’, ") is said to be nls,g — Cont.Fn. if
the inverse image of every n — Op. S. in (W,M", ") isnls,g — open in
(r, M, J).
(i) The mapping n: (I M, J) = (W, M, J’) is said to be nls,g — Irr.Fn. if the

inverse image of every nls,g — Cl. S.in (W,M', J") is nls,g — closed in
(T, M, J).

Definition 25 [6] Amap n: (I M, J) = (W, M’, ") is said to be nls,g — Cl. Map. if

for every ns, — closed subset H of (I', M, J), n(H) is nls,g — CI.S.

The complement of nls,g — Cl. Map. is nls,g — Op. Map.

Definition 2.6 [5] Amap n: (T, M, J) - (V,M', J") is called *nIg — Op. Map. if for

every nlg — open subset  of (I''M, J), n(H) isnlg — Op.S.

Definition 2.7 [5] (i) Amap f: (T,,N,7) = (A, N, J) is called n x — Hompsm., if

both f and f~1 are n « — Cont.Fn.

(i) Amap f: (T, V,7) - (A, N, J) is called nlg — Hompsm., if both f and 1 are

nlg — Cont.Fn.
(iii) Amap f: (I, V,7) - (A, N7, J) is called *nlg — Hompsm., if both f and £~ are
nlg — lrr.Fn.

Theorem 2.1 [6] Every nls,g — Cl. S. isnlg — closed but not conversely.
Theorem 2. 2 [6] Every n * -Cl. S. is nls,g — closed but not conversely.
Theorem 2.3 [1] Every n * — Cont.Fn. is nls,g — Cont.Fn.but not conversely.
Theorem 2.4 [1] Every nls,g — Irr.Fn. function is nls,g — Cont.Fn.but not
conversely.

Theorem 2.5 [1] Every nls,g — Cont.Fn. is nlg — Cont.Fn.
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3. nls,g — Homeomorphism

Definition 3.1 A bijection n: (T, M, J) = (A, M, J") is said to be nls,g — Hompsm. if
both n and n~* are nls,g — Cont.Fn.
Example 3.1 Let ' = {uq, uy, u3}; T/R = {{ug, uz}, {us3}}; X = {u,uz}; J =
{0,{us}}. M ={0,T,{us},{us,u,}}. nis,g — Cl. Sssare o(I'). Let A = {v,,v5,v3} ;
A/R = {v1},{vo, v3}} Y = {v1,v2}; J" = {0, {v}} M = {0, T, {v1}, {vy, v3}}.
nls,g — Cl. S.s are o(A). Definen: (I, M, J) » (A, M', J") asn(uy) = vi;n(uy) =
v,;n(u3) = v3. Bothnand n~1 are nls,g — Cont.Fn. Hence, 1 is nls,g — Hompsm.
Theorem 3.1
For any bijectionn: (I, M, J) —» (A, M', "), the following axioms are equivalent.

1) nt@,m,g) - T, M,J) isnls,g — Cont.Fn.

(2) nisanls,g — Op. Map.

(3) nisnlsy,g — Cl. Map.
Proof. (1) = (2) : Let X bean — Op. S. in (I, M, J). Since n™! is nIs, g — Cont.Fn.,
M H(FH) = n(H) isnlseg — openin (A, M',J"). Hence, 1 is nls,g — Op. Map.
2= @) :Letn:(I''M,TJ) = (A, M',J") be nls,g — Op. Map. Let H bean — CI. S.
in(I,M,J).ThenV —H isn— Op. S. in (I' M, J).Since n is nls,g — Op. Map.,
N(A —H) isnlseg — Op. S.in (A, M',J"). This implies that n(A — H) is nls,g —
Op.S.in(A,M',J") sothat n(H) isnls,g — Cl. S.in (A, M’, J"). Therefore, n is
nls,g — Cl. Map.
(3) = (1): Assume that H isan — CI. S. in (I', M, J). Then by hypothesis,
M HYH) =n(H) isnlseg — CL. S.in (A, M, J') sothatn~tis nls,g — Cont.Fn.
Theorem 3.2 Letn: (T, M, J) — (A, M',J") be a bijective and nls,g — Cont.Fn. Then
the following statements are equivalent.

(1) nisanls,g — Op. Map.

(2) nisanlsy,g — Hompsm.

(3) nisanis,g — Cl. Map.
Proof. (1) = (2):Letn: (I, M, J) » (A, M',J") be nls,g — Op. Map. Let H bean —
CLS.in(I',M,J).ThenA—H isn—Op. S. in (I'M, J).Since n is nls,g — Op.
Map., n(A — ) isnls,g — Op. S. in (A, M, J"). This implies that n(A — H) is
nls,g — Op. S.in (A, M', J") so that n(H) isnls,g — CL. S.in (A, M, J"). Therefore,
nisanlsy,g — Cl. Map. By Theorem 3.1, n"%: (A, M, J") » (T, M, J) isnls,g —
Cont.Fn. By hypothesis, n is nls,g — Cont.Fn.so that n is nls,g — Hompsm.
(2) = (3) : Assume that n is nls,g — Hompsm. Then nj and n~1 are nls,g — Cont.Fn.
By Theorem 3.1, n isanls,g — Cl. Map.
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(3) = (1) : The result is trivial.

Remark 3.1 Letn: (I, M, J) — (A, M, J") be bijevtive. 1 is said to be nls,g —
Hompsm. if n) is both n/s,g — Cont.Fn.and nis,g — Op. Map.

Theorem 3.3 Letn: (T, M, J) = (A, M',J") be an® — Hompsm. Thenn is nls,g —
Hompsm.

Proof. From the hypothesis, both 1 and n~! are n* — Cont.Fn. Since every n* —
Cont.Fn. is nls,g — Cont.Fn., the result follows.

Remark 3.2 The reverse implication of the previous need not be true. This is shown in
the following example.

Example 3.2 Let ' = {uq, uy, uz} ; T/R = {{ug, u}, {us}}l; X ={u,u3}; J =
{0,{us}}. M ={0,T,{us},{us, uy}}. nisug — Cl. S.s are po(I'). n* — Cl. S.s are

O,T, {us}, {ug, uz}. Let A = {v1,v5,v3}; A/R = {{v1},{vo,v3}} Y = {v, 12} I =
{0,{vy}}. M' ={Q,T,{v,},{vy,v3}}. nis,g — Cl. S.s are go(A). n* — Cl. S.s are

@, A, {v1}, {vo}, {v1, v,}, {v,, v3}. Define 1 as in the Example 3.1. Here, n™1({v,, v3}) =
{uy,,us}isnotn* — Cl. S.in (I'M, J) forthe n — CI. S. {v,, v} in (A, M', J").
Therefore, n is nls,g — Hompsm. but not n* — Cont.Fn., hence n is not n* — Hompsm.
Theorem 3.4 Every nls,g — Hompsm. is a nlg — Hompsm.

Proof. Letn: ([, M, J) — (A, M, J") be anls,g — Hompsm. Thennj and n~ 1 are
nls,g — Cont.Fn.and ) is a bijection. By Theorem 2.5, every nls,g — Cont.Fn. is
nlg — Cont.Fn., the result follows.

Remark 3.3 The reverse implication of the preceding theorem is not valid as shown in
the successive example.

Example 3.3 Let ' = {uq, uy, us, uy} ; T/R = {{uq ), {ug, us}l {usd} s X = {uq, ug};

J =1{0,{u}}. M = Q,T,{uy,uy}. Here, nis,g — Cl. S.sare @, T, {u,}, {uy, us},

{u1, Uz, uz}, {uz, us, usy and nlg — Cl. S.sare @, T, {uy }, {uz}, {us}, {ug, uz}, {ug, us},
{uz, us}, {uz, g}, {us, g}, {ug, Uz, us}, {us, up, us} {us, us, ug}, {ug, us, usk.

Let A = {v1,v;5, 03,04} ; A/R = {{v1}, {v2, 04}, {v3}} Y = {v, v}, T =

{0, {v2}, {vs} (v, v33} M = @, A, {v1}, {v2, va}, {v1, v2, va}. Here @, A, {v,}, {v5},
{v1, v3}, {v2, v3}, {v3, v}, {V1, V2, U3}, {V1, V3, V4 }, {V, v3, v, } are both nis,g — CI. S.s
and nlg — Cl. S.s. Definen: (I M, J) = (A, M, ") asn(uy) = vyn(uy) =
v3;n(u3) = vi;m(uy) = v,. 7 Lis both nlg — Cont.Fn.and nls,g — Cont.Fn.
Forthen — CL.S. {v3} in (A, M, "), n t({v5}) = {u,} is nlg — closed but not
nls,g — closed in (I', M, 7). Therefore, n is nlg — Cont.Fn. but not nls,g — Cont.Fn.
Hence, 1 is nlg — homeomorphsim but not nis,g — Hompsm.

Remark 3.4 Composition of two nls,g — Hompsm. need not be nls,g — Hompsm.
Example 3.4 LetT' = {uq, uy, u3}; I/R = {{uq}, {us, usl} s X = {uy}; J = {0, {uz}}.
M ={0,T,{u,,uz}}. nis,g — Cl. S.ssare @,T, {u; }, {u,}, {us, uz}, {us, us}. Let A =
{v1,v2,v3} 1 A/R = {{v1, 3}, {v23} 1 Y = {v3} 1 J' = {@, {v1}}. M" = {0, T, {vy, v3}}.
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nls,g — Cl. S.sare @, A, {v,},{v,}, {vi, v2}, {vy, v3}. Let A = {wy,w,, w3}, A/R =
{{wi, wa}, {ws}}; 2 = {w2}; J" = {0, {wz}}. M = {@, A {w1,w;}}. nls,g — Cl. S.s
are @, A, {w,}, {ws}, {wy, w3}, {w,, ws}. Definen: (I, M,J) » (A, M',J") asn(uy) =
v M(uz) = va;m(uz) = vs. Define §: (A, M, J") » (A M",J") as {(v,) =

wy; {(vy) = ws; {(v3) = w,. Bothn and ¢ are nls,g — Hompsm. As { o

n:(0,M,J) = (WM, 3", (§ o n)({uz us}) = {({uz, us}) = {{vp,v3}) =

{w,, w3} which is not nls, g — openin (A,M",J") forn — Op. S. {u,, us} of

(T, M, J). Therefore, { o n is not nls,g — Hompsm.

4. *nls,g — Closed Maps

Definition 4.1 Amapn: (I, M, J) - (A, M', J") is said to be *nls,g — Cl. Map. if for
every nls,g — closed subset # of (I', M, J, n(H) is nls,g — closed. The complement
of *nls,g — Cl. Map. is *nls,g — Op. Map.

Example 4.1 Let ' = {uq, uy, us, us}; T/R = {{uy}, {uy, us}, {us}} ; X = {uy, uz} and
J =1{0,{u}}. M = {0, T, {u,}, {ug, up, us}, {uy, us}}. nis,g — Cl. S.s are

Q)' I, {uZ}' {U4}, {ulJ u4}' {uZ' u4}' {u3, u4}, {ull Uz, u4}' {u1; Us, u4}' {uz' Us, u4}' LetA =
{v1, V2,3, 14} ; A/R = {{v1}, {vo, va}, {v3}} ;Y = {vy, v} and ' =

{Q)r {172}, {U3}, {172, 173}}. nlsag —Cl. S:sare @, L, {vz}: {173}, {171, 03}, {UZI 173}, {173, 174},
{v1, 2, v3}, {v1, V3, V4 3}, {v2, v3, 14} Define n: (T, M, J) - (A, M, J") by n(uy) =

vy, N(Uy) = v,,n(u3) = vy, n(wy) = v,. Here, nis *nls, g — Cl. Map.

Theorem 4.1 Every *nls,g — Cl. Map. is nls,g — Cl. Map.

Proof. Letn: (I, M, J) = (A, M', J") is *nls,g — Cl. Map. Let H be a n — closed
seubset of (I', M, J). Since every n — ClI. S.isnls,g — CI. S., H isnls,g — CI. S. in
(I, M, 7). Also, since 1 is *nls,g — Cl. Map. n(H) isnls,g — CI. S.in (A, M',J") so
that n is nls,g — Cl. Map.

Remark 4.1 A nls,g — Cl. Map. Need not be *nls,g — Cl. Map.

Example 4.2 Consider (T, M, J) and (A, M, J") of Example 4.1. Define

n: (O,M,J) = (A,M',J7) by n(uy) = vy, n(uz) = vy, n(usz) = v,,n(wy) = vs which
isnls,g — Cl. Map. For the nls,g — CI. S. {u,} of (T, M, J), n({u,}) = {v,} is not
nls,g — Cl. S.in (A, M’, J"). Therefore, n is not *nis,g — Cl. Map.

Theorem 4.2 Amapn: (I, M, J) = (A, M', ") is *nls,g — Cl. Map. if and only if for
every nls,g — open subset £ containing n~1(S), there is a nls,g — Op. S. X of
(A,M',J),n(F) suchthat S € K and n~1(K) € H.

Proof. Necessity: Let H be anls,g — Op. S. in (I',M, J). Then H¢ isnls,g — CI. S.
in (T, M, J). Since n is *nls,g — Cl. Map., n(H¢) isnls,g — CI. S.in (A, M, J").
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Thus, I' = n(#°) isnls,g — Op. S., say K containing S such that n~1(X) <

(A —n(H)) =T —H® =H.

Sufficient: Let 7 be nls,g — CI. S.in (T, M, J). Then H ¢ is nls,g — Op. S. in

(T, M, J). By hypothesis, there exists a nis,g — Op. S. K of (A, M',J") suchthat § ©
K and n~1(%) € H and so H € (n1(K))" = n~1(5¢¢) which implies n(#) = K°.
Since K¢ is *nls,g — closed, then n(H) is *nls,g — closed in (A, M’, J"). Hence,
is *nls,g — closed.

5. *nls,g — Homeomorphism

Definition 5.1 A bijection n: (T, M, J) = (A, M, J") is said to be *nls,g — Hompsm.
if both  and ™ are nls,g — Irr.Fn.
Example 5.1 Let ' = {uq, uy, u3}; T/R = {{ug, uz}, {us}}; X = {u,uz}; J =
{0, {us}}. M ={0,T,{us}, {us, u,}}. (') is the nis, g — CI. S.
Let A = {vy, v, 03} ; A/R = {{v1}, {v2, v3}} Y = {v, 12} I’ = {0, {v2}}.
M' ={0,A,{v,},{v,, v3}}. 0(4) is the nIs,g — CI. S.
Definen: (I, M, J) » (A, M', ") asn(uy) = vy;n(u,) = vy;n(ug) = vs. Bothnand
n~tare nls,g — Irr.Fn. Hence, n is *nls,g — Hompsm.
Theorem 5.1 For any bijection n: (I', M, J) - (A, M', J"), the following axioms are
equivalent.

Q) nt@,Mm,J) - [T,M,J)isnlsqg — Irr.Fn.

(2) nisa*nlsyg — Op. Map.

(3) nis*nls,g — Cl. Map.
Proof. (1) = (2) : Let H be anls,g — Op. S. in (I, M, J). Since n™ is nls, g —
Irr.Fn., (™) Y(H) = n(H) isnls,g — openin (A, M', J’). Hence, n is *nls, g —
Op. Map.
2= @) :Letn:(I'M,T) = (A, M',TJ") be *nls,g — Op. Map. Let H be anls,g —
CL.S.in(T,M,J).ThenT — H isnls,g — Op. S. in (I', M, J).Since n is *nls,g —
Op. Map., n(I' = H) isnls,g — Op. S.in (A, M’,J"). This implies that n(H)¢ is
nls,g — Op. S.in (A, M', J") so that n(H) isnls,g — CL. S.in (A, M, J"). Therefore,
nis *nls,g — Cl. Map.
(3) = (1): Assume that H isanis,g — ClI. S. in (I, M, J). Then by hypothesis,
M HYFH) =n(H) isnlseg — CL. S.in (A, M, J") sothatn~tis nls,g — Irr.Fn.
map.
Remark 5.1 Letn: (T, M, J) - (A, M, J") be bijevtive. n is said to be *nls,g —
Hompsm. if n is both nls,g — Irr.Fn. and *nls,g — Op. Map.
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Theorem 5.2 Let n: (T, M, J) = (A, M, J") be a bijective and $nls_\alpha g — $
Irr.Fn. map. Then the following statements are equivalent.

(1) nisa*nls,g — Op. Map.

(2) nisa*nls,g — Hompsm.

(3) nisa*nilsyg — Cl. Map.
Proof. (1) = (2):Letn: (I, M, J) - (A, M', J") be *nIs,g — Op. Map. Let H be a
nls,g — CL. S.in (T, M, J).Then its complement H ¢ is nls,g — Op. S. in
(T, M, J).Since n is *nls,g — Op. Map., n(H?) isnls,g — Op. S.in (A, M, J"). This
implies that (n(#))  is nlsqg — Op. S. in (A, M, J") so that (n(#)) is nls.g — Cl.
S.in (A, M',J"). Therefore, n is *nls,g — Cl. Map. By Theorem 4.3,
nh@,Mm,J) - ([T, M,J) is nlseg — Irr.Fn. By hypothesis, n is nls,g — Irr.Fn. so
that n is *nls,g — Hompsm.
(2) = (3) : Assume that 1 is *nIs,g — Hompsm. Thenn and n~* are nls, g — Irr.Fn. By
Theorem 4.3, n is *nls,g — Cl. Map.
(3) = (1) : The result is trivial.
Theorem 5.3 Every *nls,g — Hompsm. is nls,g — Hompsm.
Proof. Letn: (I, M, J) = (A, M',J") be *nls,g — Hompsm. Thenn and ! are
nls,g — Irr.Fn. and 7 is bijective.
Since every nls, g — lrr.Fn. function is nls,g — Cont.Fn., both y and n~1 are nls,g —
Cont.Fn. Therefore, n is nls,g — Hompsm.
Remark 5.2 The reverse implication of the preceding theorem is not valid as shown in
the successive example.
Example 5.2 Let ' = {uq, uy, us, uys}; T/R = {{uq} {ug, us} {usd} ; X = {uq, us};
J ={0,{us}}. M = {0, T, {u}, {uz, us}, {us, uz, uz}}. nlsqg — Cl. S.sare @, T, {us},
{uad {ur, ua}, {ug, ug}, {us, ugd, {ug, up, usd, {us, us, ugd {ug, us, ug}.
Let A = {vy, v, 03,04} ; A/R = {{v, v3}, {v2}, {(va}} 1 Y = {vp,v3} 1 I’ = {0, {v1}}.
M' ={0,A,{v,},{vy,v3}, {v1, V2, v3}. nlsqg — Cl. Ssare @, A, {v,}, {vs}, {v1, 4},
{2, V4}, {vs, va}, {v1, V2, V4}, {v1, v3, 4}, {v2, V3, 1 }.
Define n: (I, M, J) - (A, M", ") asn(uy) = vi;m(uz) = vym(uz) = vz n(uy) = vy
which is nls,g — Hompsm. For the nIs,g — CI. S. {v;}in (A, M, ), n*({v}) =
{u}isnotnlseg — CL. S. in (T, M, J) hence, n~t is not nls,g — Irr.Fn. Therefore, 1 is
nls,g — Hompsm. but not *nls,g —Hompsm.
Theorem 5.4 Composition of two *nls,g — Hompsm. is *nls,g — Hompsm.
Proof. Let n: (T, M, J) = (A, M',J") and & (A, M', J") = (AN, 7") be *nis,g —
Hompsm. respectively. Then (on: (I M, J) = (A, N',7"). Let H be nls,g — Op. S.
in (A, V', 7"). Since Cis nlsqg — Irr.Fn., T 1(H) isnls,g — openin (A, M’,J"). Since
nisnls,g — Irr.Fn., n~1(#) is nls,g — open in (T, M, J). Therefore, (o nis nls,g —
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Irr.Fn. Also, for the nis,g — Op. S. H in (T, M, J), n(H) isnls,g — open in

(A, M, 3", sincentisnls,g — Irr.Fn. Since Tis nls,g — Irr.Fn., (Ton)(H) =
{(n(#)) is nls,g — openin (A, V', 3"). Therefore, ({on)~! is nlseg — Irr.Fn. Hence,
Comis *nls,g —Hompsm.

Theorem 5.5 The set s*nls,g — h(I', M, J) is a group under the composition of
mapping.

Proof. Define a binary operation *: *nls,g — h(I', M, J) X *nls,g — h(I', M, J) —
*nlsqg —h(T,M,J)byn*{= neforallnm,{ € nis,g — h(,M,J) and o is the
usual operation of map. Then by Theorem 4.9, 1o T €* nls,g — h(I', M, J). We know
that the composition of maps associative. The identity map I: (T, M, J) — (I, M, J)
belonging to *nis,g — h(I', M, J) serves as the identity element. For any n €* nls,g —
h(T,M,J),nont =non~! =I. Hence, inverse exists for each element of *nis,g —
h(T, M, J). *nls,g — h(I', M, J) forms a group under the composition of maps.
Theorem 5.6 Letn: (I, M, J) - (A, M, J") be an *nls,g — Hompsm. Then n induces
an isomorphism from the group *nis,g — h(I', M, ) onto the group *nis,g —
h(am,g).

Proof. Letn € *nisqg — h(4,M',J’). Define amap Q,: "nlsqg — h(I, M, J) -
"nlseg — h(A,M',J") by 0, (6) =necon forevery o € *nisqg — h(I, M, J).
Then o is a bijection. Now, for all {,c € *nis,g — h(I', M, J),

Qn(@e0) =no(@eo™ =men™") e (mon™") = 0, (D ° 2y (0).

6. Conclusion

In this paper, we introduce Homeomorphism using nls,g — closed sets and discussed
some of its characteristics. Further, we investigated some of the equivalent conditions.
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