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Abstract 

We present a differential equation of motion of a particle as well as utilizing some 

integral transform methods for example Mohand transform and Laplace transforms. We 

begin by showing how the Mohand transformation method applied to a dynamical 

system. The results are compared with after applying Laplace transform method. The 

results shows that the both techniques are easy and analyzed with each other. 

Keywords:Physical problems, Differential equations, Mohand transform and Laplace 

transform. 

1. Introduction: 

       The MohandTransform technique was used to solve physical system 

issues that include boundary value difficulties in virtually every area of 

science and engineering. The physical differential equations have been 

solved by a number of integral transforms, including Laplace, Fourier, and 

others, were utilized. 

        The "Mohand Transform" is one of the integral transforms that can be 

utilized in the process of resolving any boundary value problem that 

manifests itself in the form of a differential equation representing a 

physical system. It is general known that differential equations may often 

be computed by applying the Laplace transform technique as part of the 

solution process. However, the “MohandTransform" is an exception to this 

rule. In this study, we examined the two different integral transform 

techniques. To begin, we will explain basic formulae and attributes shared 
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by both transforms.  

        In addition, LT represents Laplace transform, MT represents Mohand 

transform whereas D.E represents differential equation. 

2. Definition of Mohand transform and Laplace transform: 

Mohand transform is defined as  for 

the function f(t)  for 0)( tf as  

.21),(
0

)(2)]([ kvkvpdtvtetfvtfM 


  

Where M is the called Mohand 

transform indicator. 

Laplace transform is defined as  for the 

given function f(t) for 0)( tf as 

),()(
0

)]([ sFdttfstetfL 


   Where s is 

the parameter and L is the called Laplace 

transform indicator. 

 

Both transform should have the sufficient condition is continuous and 

exponential. 

3.MT and LT of some standard functions 

Sl.no. f(t) L[f(t)] M[f(t)] 

1 1 
s

1  v  

2 Cosh(at) 
22 as

s



 
22

3

av

v


 

3 Sinh(at) 
22 as

a


 

22

2

av

av


 

4 Cos(at) 
22 as

s


 

22

3

av

v


 

5 ate  
as 

1  
av

v



2

 

6 Sin(at) 
22 as

a


 

22

3

1 va

av



 

7 t 
2

1

s
 1  



Study on motion of an electron in a physical system by using some integral 
transforms  

                                                                                                                                      
Section A-Research paper 

 

969 
Eur. Chem. Bull. 2023,12(8), 967-974 

 

4. Inverse Mohand and Laplace Transform definitions: 

Inverse Mohand transform : If )(vp  is 

the Mohand transform of  f(t) is called 

inverse Mohand transform of )(vp  and is 

represented by  )(1)( vpMtf   where 

1M is an operator and is called Mohan 

inverse transform indicator . 

Inverse Laplace transform:  

If  f(s) is Laplace transform of 

f(t) ,then )]([1)( sFLtf    is the 

inverse of f(s), 1L  is the inverse 

Laplace indicator. 

5. Inverse Mohand transform and inverse Laplace transform of 

standard Functions 

Sl.no. f(t) )]([1 tfL

 

)]([1 vTM  

1 1 

s

1
 

v  

2 Cosh(at) 
22 as

s



 
22

3

av

v


 

3 Sinh(at) 
22 as

a


 

22

2

av

av


 

4 Cos(at) 
22 as

s


 

22

2

av

av


 

5 ate  
as 

1  
av

v



2
 

6 Sin(at) 
22 as

a


 

22

3

1 va

av



 

7 t 
2

1

s
 

1 

 

 



Study on motion of an electron in a physical system by using some integral 
transforms  

                                                                                                                                      
Section A-Research paper 

 

970 
Eur. Chem. Bull. 2023,12(8), 967-974 

 

 

6. Mohand and Laplace transform of derivatives of function f(t) : 

6.1 M.T of  
dt

tfd )(
   for the function f(t) 

          If )()]([ vptfM    then  
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6.2 L .T of  
dt
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   for the function f(t) : 
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7. Main Results:  

Consider motion of an electron is given by the following equations  

)1......(..........
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Consider the conditions 
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To determine path of an electron ,if it started from the rest. 
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Both sides, Apply Mohand Transform of equation (1) 
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Taking Mohand Transform of equation (2) and applying the conditions 

on both sides    we get 
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 Now Solving Equations (3) and (4), we get 

 

 

Applying inverse Mohand transform we get , 
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Similarly we get    ].cos1[)( t
h

E
tx 


 ………….………...(6) 

Let us consider the equations (1) as well as (2) and both sides apply 

Laplace transform 
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Similarly applying Laplace transform for equation (2) 
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Applying boundary conditions 
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Solving equations (7) and (8) 
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Let us consider as 
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Comparing equations (5) and (6) and (9) and (10) are similar. 

8. Conclusion: 

We have effectively generalized the differential equations using the 

Mohand Transforms and the Laplace Transform approach in this research. It 

clearly shows that after applying these methods for any physical system 

problems the solution is similar. 
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