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Abstract 

 

The pH process is challenging to control using conventional techniques because of its nonlinear and time 

varying process characteristics. This necessitates the design of model based control strategies for non-

linear pH process. In this paper, Deep Neural Network is used to develop the forward and inverse models 

of pH process using its input-output data. The developed forward and inverse models are plugged into the 

Internal Model Control structure. To get the optimum performance, the number of hidden neurons in the 

hidden layers of DNN is determined using Grey Wolf Optimization. The effectiveness of the Grey Wolf 

Optimization based Deep Neural Network Internal Model Controller is contrasted with those of the Deep 

Neural Network Internal Model Controller and the traditional PI Controller. 

 

Keywords: pH process, Non-linear, Grey Wolf optimization and Controller. 

 

 
1. Introduction 

Industrial processes show the complicated dynamics and nonlinear behaviour. It is known that all 

processes show some nonlinear behaviour. The application of model-based controllers that are efficient 

for processes whose nonlinearities cannot be ignored without adverse effects has recently attracted more 

industrial and academic interest. Since the dynamics of the pH process are extremely nonlinear and 

varying gain of several orders, Tight control of pH is also essential in the manufacturing of 

pharmaceuticals and waste water treatment [1]. Ali, E. [2] discussed the PI tuning method, globally 

linearizing control and gain scheduling controllers and the outcomes were compared. Kumar, A.A. et al. 
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[3] designed and implemented the pole placement technique based PI controller both in simulation and 

real time. The titration curve was obtained using CH3COOH and NaOH.  

Gustafsson,T.K. and Waller,K.V [4] elaborated an excellent overview of various adaptive control and 

non-linear methods for pH control. This study focuses on the useful advantages of ratio control and feed 

forward-feedback structure. Henson, M. A., and Seborg, D. E.[5] illustrated a pH neutralisation process 

with an Adaptive Nonlinear Output Feedback Control (ANOFC) approach. Over a variety of buffering 

conditions, the ANOFC produces excellent control of pH. For unquantified acid flow rate disruptions, the 

ANOFC works better than the PI and adaptive nonlinear controllers. Alina, B., and Madalina, C [6] 

designed IMC structure for wastewater pH neutralization process. They concluded that multi-model IMC 

algorithm is a feasible alternative for controlling pH process. 

Palancar et.al., [7] developed a neural controller that consisted of forward and inverse model. By 

combining these two, the neural controller could calculate the required reagent flow for pH control. The 

controller was first tested with simulations and then implemented on a pilot-scale neutralization process. 

The buffering was changed during the test runs and the controller adapted to small and gradual buffer 

changes. Unfortunately the learning was not efficient enough for sudden and significantly big changes in 

the buffering [8]. Elarafi et al [9] described feasible modelling of the pH neutralisation plant using 

empirical methods, and compared the effectiveness of a predictive controller based on an ANN to 

conventional PID controllers. The feasible empirical model that came nearest to a second-order with dead 

time was identified. E.Sivaraman et al. [10] applied a NNIMC for a nonlinear pH process and their results 

were contrasted with those of a traditional PI controller and direct inverse neuro controller. Using the 

Levenberg-Marquardt method, the inverse and forward neuro structures are developed.  

Meta-heuristic algorithm that mimics the leadership structure and hunting behaviour of grey wolves is 

called the Grey Wolf Optimizer (GWO). Given their position at the top of the food hierarchy, grey wolves 

are considered to be apex predators. They live in clusters, with each group averaging five to twelve 

residents. The group's members uphold a rigid social order. Alpha wolves are regarded as the most 

dominant members of the pack order. The omega wolves are under the authority of beta and delta, who 

are subordinates to alpha [11]. 

In this paper, Grey Wolf Optimization based DNN Internal Model Controller is designed and 

implemented for a nonlinear pH process. The introduction to the pH process and a review of relevant 

literature are elaborated in Section 1.The mathematical modelling of the pH process and an explanation of 

the process are described in Section 2. Section 3 discusses identification of process and controller 

parameters and the section 4 discusses Grey Wolf Optimization algorithm. The design procedure of GWO 

based DNN Internal Model Controller for a pH process is detailed in Section 5 of this article. The 

outcome and discussion of the current task are elaborated in Section 6, and the conclusion is reported in 

Section 7. 

2. Process Description and Mathematical Modeling 

A sodium hydroxide (NaOH) solution makes up the process stream, while an acetic acid (CH3COOH) 

solution makes up the titrating stream. An instantaneous chemical interaction between an acid and a base 

produces salt and water during the neutralisation process. The equivalence point is where the amounts of 

the bases and acids are equivalent, and this is where the process gain reaches its maximum value. The 

precision of the control system and the range capability of the reagent distribution system would be under 

extremely high demands if this system was to be controlled close to pH 7. The moderately high gain near 

neutrality makes it clear that the strong base/weak acid system is comparatively difficult to control. It 

should be emphasised that neutrality and the equivalence point don't always coincide. Thus the, a strong 

base- weak acid neutralisation procedure is taken up for the study. 
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The dynamic physical and chemical behaviour of pH in continuously stirred tank reactors was described 

by McAvoy et al. [12]. They created the dynamic formulae for the neutralisation of CH3COOH 

and  NaOH and then compared them to the findings of the experiments. The technique applies mass 

balance to individual components or groups of components. 

The pH process's linear algebraic equation is written as 

 

               
 

 

The following mass balances reveal the reaction symmetries, and. ζ and ξ 

                           
where [H+] has been the hydrogen ion concentration. The pH is finally determined as 

                                  
 

The following are the system specs at the nominal setpoint 

 

            
 

Solving equations (1), (2), (3), and (4) in modelling using MATLAB software for changes in the acid 

flow rate (FA) from 0-0.5 L/min results in the steady-state titration curve for the acid-base system. At an 

acid flow rate of roughly 0.2 L/min, the system's static nonlinear behaviour is readily noticeable. The pH 

value will change drastically from 11 to 7 even with a slight change in the acid flow rate in the region. 

Since this operating point is challenging to design the conventional controller. 

 

By giving the step change in control variable, the process response curve is obtained. The parameters of 

the pH process at each zone are identified using this technique. The appropriate reaction curves have been 

determined for each of these regions after a step change in inflow is provided in both the negative and 

positive directions. The variable time constant (τ) and process gain (Kp) are obtained from these process 

reaction curves. At the setpoint of 8,  both negative and positive step change in acid flow rate was applied 

to produce the PRC  for zone 2. This result is shown in Figure 1. Table1 lists the process parameters that 

were attained for different zones. The pole placement method is used in the design of PI controller. 
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Figure 1. Process reaction curve for zone3. 

 

Table 1. pH process parameters for various zones. 

Zone 

Nominal 

operating  

Point 

Process Gain  Time constant 

pK  

(+FA) 

pK        (-

FA) 

pK  

(Average) 

  

(+FA) 

  

(-FA) 

  (Average) 

1(13to11) 12 -37 -12 -24.5 22 9.6 15.8 

2(11to 9.5) 10.25 -3520 -1012 -2266 20.5 10.5 15.5 

3(9.5 to 8) 8.75 -2416 -7702 -5059 10.1 15.1 12.6 

4 (8 to 6.5) 7.25 -98 -136 -117 10.2 19.5 14.85 

5 (6.5 to 4.5) 5.5 -27 -97 -62 10.25 21.4 15.83 

 

4. Grey Wolf Optimization (GWO)  

The grey wolf is a member of the canid family (Canis lupus). Grey wolves are thought of as apex 

predators because they are at the summit of the food chain. Grey wolves typically prefer to live in groups. 

There are typically 5 to 12 individuals. They have a very rigid social dominant order, which is particularly 

interesting [13,14]. The social structure of grey wolves and their hunting method are numerically 
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modelled in this work in order to create GWO and carry out optimization. The encircling motion can be 

mathematically modelled using the following equations. 

 

 
 

where t denotes the present iteration,  ⃗and  ⃗denote coefficient vectors,   
⃗⃗ ⃗⃗ ⃗     denotes the prey's position 

vector, and  ⃗denotes a grey wolf's position vector. The following formulas are used to determine 

vectors ⃗and  ⃗: 

    
 

where   ⃗⃗⃗ ⃗   ⃗⃗⃗⃗  are random vectors in the range [0, 1] and elements of an are linearly reduced from 2 to 0 

over the period of iterations. The first 3 acquired best solutions in GWO are currently stored and because 

of the locations of the best search agents, the other search agents  are forced to update their positions. The 

following equations are suggested in this respect. 

 
The mathematical representations of the social order in the GWO algorithm include  encircling, 

attacking, and tracking prey. 

 

5  Grey Wolf Optimization based DNN  

The output layer, hidden layers, and input layer make up the main three elements of the DNN 

architecture. Fig.6 depicts the DNN architecture that has been suggested. The DNN is built with 2 hidden 

layers to perfectly learn the mapping connection between the output and input data by taking the effort of 

weight fitness into account. The DNN iteratively modifies the hidden neurons in the hidden layers during 

the training process using the GWO. This neural network continues to fit the decision boundary of the 

labelled training as the training trials rise. Equation (5) is used to calculate the overall number of nodes in 

the hidden layer. 

 

       
where a denotes the number of nodes in the input layer, b is the number of nodes in the output layer, n is 

the number of nodes in the hidden layer, and c a fixed value between [1,10]. In the hidden layer of the 

DNN, an activation function is introduced to enable the non-linear fitness capability. The activation 

function we used, the sigmoid, is given as, 
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The mapping function Mf activates the network's incoming data, which is referred to as x. 

 

                  
 

where, correspondingly, x and b stand for the weight matrices and the bias between the output layer and 

the hidden layer. 

.  

5.1 Modelling using GWO-DNN Algorithm 

 

The inverse and forward modelling of processes using GWO-DNN algorithms is described in this part. 

The created physical model is stimulated by uniformly perturbed random input signal. 1000 data points 

were gathered from the physical model. The forward and inverse models are developed using the common 

GWO-DNN structures. 

.  

5.2 Forward Model using GWO-DNN algorithm 

 

Forward modelling is the process of representing forward dynamics of the process. In order to predict the 

present output, the process's forward modelling makes use of the past inputs and outputs. In order to 

create a forward model of the pH process, acid flow rate and pH readings are taken into account. Figure 2 

depicts the schematic representation of GWO-DNN forward model. The forward model is trained using 

the following values. 

Input vectors    :   1)]-(kF2)-pH(k1)-[pH(k A  

Output vector           :   (k)Hp


 

Sampling interval       :   15 sec 

 

 

 

 
Figure.2. Schematic representation of GWO-DNN forward model. 

 

 

 



 GREY WOLF OPTIMIZATION BASED DEEP NEURAL  

NETWORK INTERNAL MODEL CONTROLLER FOR  A PH PROCESS     Section: Research Paper 

                                                                                                                              ISSN 2063-5346 

 

7406 
Eur. Chem. Bull. 2023,12(Special Issue 7), 7400-7411 

 

 

 

 

5.3  Inverse Model using GWO-DNN Algorithm 

 

Inverse modelling is the process of representing the  inverse dynamics of the system. GWO-DNN Inverse 

model uses the current output, delayed input, and delayed outputs to train the inverse GWO-DNN model. 

Figure 3 depicts the schematic representation of GWO-DNN inverse model. The non-linear inverse 

model-based control scheme is one such way of control. This technique, however, heavily relies on the 

accessibility of the system's inverse, which is challenging to determine analytically for non-linear 

systems. Therefore, the inverse modelling and analysis can be developed using GWO-DNN. The inverse 

model is trained using the following values. 

 Input vectors    :  1)]-pH(kpH(k)1)-(k[FA  

 Output vectors            :  (k)FA


 

 Sampling interval       :  15 sec  

 

 

 
Fig.3. Schematic representation of GWO-DNN inverse model. 

Forward and inverse models that have been created are used to create the Internal Model Control 

structure. Figure 4 shows the structure of IMC with developed GWO-DNN based forward and inverse 

models. 

 
Fig. 4. Structure of IMC using GWO-DNN forward and inverse models. 
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6. Results and Discussion 

 

The controlled variable (pH) profiles and the manipulated variable (FA) profiles are presented in 

Figures.5 and 6, respectively. Large overshoot and setting time are produced by the PI controller. DNN 

IMC doesn't show any appreciable variations. The accuracy of GWO-DNN IMC is clearly visible around 

all operating conditions as shown in Figure 5. Table 2 lists the performance metrics for the servo response 

of the pH process using the DNN IMC, GWO-DNN IMC, and PI controller. 

 
Figure.5. Servo Response of pH Process with PI, DNN IMC and GWO-DNN IMC. 

 
Figure.6. Controller Output of pH Process with PI, DNN IMC and GWO-DNN IMC for 

Set  Point Tracking. 
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Table 2 Performance Measures of PI, DNN IMC and GWO-DNN IMC for Set-Point Tracking 

 

SP 

Change 

in pH 

ISE Settling Time (Seconds) 

PI 
DNNI

MC 

GWO-

DNN 

IMC 

PI 
DNNI

MC 

GWO-

DNN IMC 

7-8 15.88 9.32 9.37 112 59 54 

8-9 11.31 7.46 5.28 185 52 22 

9-10 4.45 3.53 3.25 303 50 45 

 

The regulatory response of the pH process using the DNN IMC, GWO-DNN IMC, and PI controllers at 

the operating points of pH 9 and 7 is shown in Figures 7 and 9 and the associated controller outputs are 

presented in Figures 8 and 10 respectively. At the 250
th
 second, a base flow rate step variation of 10% 

above the nominal value is applied, and the resulting pH variation is measured. Figures 7 and 9 show the 

shortcomings of the PI controller and DNN IMC. PI controller and DNN IMC generate massive IAE, ISE, 

and settling time when the disturbance is applied, whereas GWO-DNN IMC generates smaller IAE, ISE, 

and settling time with zero offset. Table 3 lists the performance metrics for the regulatory reaction of the 

pH process using the DNN IMC, GWO-DNN IMC, and PI controller. 

Figure.7. Simulated regulatory response of pH process with PI, DNN IMC and GWO-DNN IMC at 

the Operating Point of 9 (10% Load Change in base flow rate applied at 250
th

 Second) 
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Figure.8. Controller output of pH process with PI, DNN IMC and GWO-DNN IMC at the 

Operating Point of 9 (10% load change in base flow rate applied at 250
th

 Second). 

 
Figure.9. Simulated regulatory response of pH process with PI, DNN IMC and GWO-DNN IMC at 

the Operating Point of 7 (10% Load Change in base flow rate applied at 250
th

 Second) 
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Fig.10. Controller Output of pH process with PI, DNN IMC and GWO-DNN IMC at the 

operating point of 7 (10% Load Change in Base Flow Rate applied at 250
th

 Second). 

 

Table 3 Performance Measures of PI, DNN IMC and GWO-DNN IMC Controller for load  

disturbance in base flow rate. 

 

 

 

 

 

 

 

 

 

 

 

7.Conclusion 

This work discussed the design procedure of PI controller using pole placement technique. Also the Grey 

Wolf Optimization based DNN IMC scheme is created and applied. The servo response of the pH process 

at different operating points reveals that the GWO-DNN IMC outperforms when compared with those of 

DNN IMC and PI controller in terms of performance metrics. The superiority of the proposed GWO-

DNN IMC was proved by the regulatory response of the pH process at the operation conditions of pH 7 

and 9 in terms of ISE and settling time. 
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