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Abstract 

Let 𝐺 = (𝑉, 𝐸) be a graph with 𝑝 vertices and 𝑞 edges. A graph 𝐺 is said to be a prime mean 

cordial labeling if there exists an injective function 𝑓: 𝑉(𝐺) → {0,1,2, … , 𝑞} such that the 

induced edge labeling 𝑓∗: 𝐸(𝐺) → {0,1} defined by 𝑓∗(𝑢𝑣) = {1        𝑖𝑓 ⌈
𝑓(𝑢)+𝑓(𝑣)

2
⌉ 𝑖𝑠 𝑜𝑑𝑑

0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                 
  

satisfying the condition that for every 𝑣 ∈ 𝑉(𝐺) with 𝑑𝑒𝑔(𝑣) ≥ 1, 𝑆𝑣 = ∑{𝑓∗(𝑒 = 𝑢𝑣)/𝑢𝑣 ∈

𝐸(𝐺)} is 1 or prime and  |𝑒𝑓(𝑖) − 𝑒𝑓(𝑗)| ≤ 1, 𝑖, 𝑗 ∈ {0,1} where 𝑒𝑓(𝑥) denotes the number of 

edges labeled with 𝑥. . A graph with prime mean cordial labeling is called prime mean cordial 

graph. In this paper prime mean cordiality of some graphs are discussed. 

Key words: Prime, Mean, Cordial, Mean Cordial, Prime Mean Cordial, Brush graph, Fusing. 
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Introduction 

Graphs we consider here are simple, finite, connected and undirected. The vertex set and edge 

set of a graph 𝐺 are 𝑉(𝐺) and 𝐸(𝐺) respectively. The concept of cordial labeling was 

introduced by Cahit in the year 1987. The concept of mean labeling was introduced by S. 

Somasundaram and R. Ponraj. The concept of prime mean labeling was introduced by K. 

Palani. Motivated from the above works, we introduced a new type of labeling called prime 

mean cordial labeling. 

Definition :2.1. 

Let 𝐺 = (𝑉, 𝐸) be a graph with 𝑝 vertices and 𝑞 edges. A graph 𝐺 is said to be a prime mean 

cordial labeling if there exists an injective function 𝑓: 𝑉(𝐺) → {0,1,2, … , 𝑞} such that the 

induced edge labeling 𝑓∗: 𝐸(𝐺) → {0,1} defined by 𝑓∗(𝑢𝑣) = {1        𝑖𝑓 ⌈
𝑓(𝑢)+𝑓(𝑣)

2
⌉ 𝑖𝑠 𝑜𝑑𝑑

0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                 
  

satisfying the condition that for every 𝑣 ∈ 𝑉(𝐺) with 𝑑𝑒𝑔(𝑣) ≥ 1, 𝑆𝑣 = ∑{𝑓∗(𝑒 = 𝑢𝑣)/𝑢𝑣 ∈

𝐸(𝐺)} is 1 or prime and |𝑒𝑓(𝑖) − 𝑒𝑓(𝑗)| ≤ 1, 𝑖, 𝑗 ∈ {0,1} where 𝑒𝑓(𝑥) denotes the number of 

edges labeled with 𝑥.  A graph with prime mean cordial labeling is called prime mean cordial 

graph. 
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Example: 1.2 A graph that admits a prime mean cordial labeling is given below: 

 

 

 
 

                                                                         

                 Figure 1 

Here 𝑒𝑓(0) = 3, 𝑒𝑓 (1) = 4 and 𝑆𝑣  = 1 or prime. 

Theorem: 1.3 The Brush graph 𝑩n  (𝒏 ≥  𝟑) is prime mean cordial graph

 Proof:  

Let 𝑽 (𝑩n)  =  {𝒖1, 𝒖2, … , 𝒖n , 𝒗1, 𝒗2 , … , 𝒗n} and 

 𝑬(𝑩n)  =  {𝒖i 𝒖i+1: 𝟏 ≤  𝒊 ≤  𝒏 –  𝟏} ∪ {𝒖i𝒗i: 𝟏 ≤  𝒊 ≤  𝒏} 

Define 𝑉(𝐵n)  →  {0,1,2, …  𝑞} as follows: 

Case (i): 𝑛 ≡  0 (𝑚𝑜𝑑 3) 

          Let 𝑛 =  3𝑡 
Define 𝑓∗(𝑢𝑖𝑢𝑖+1) = 0, 1 ≤ 𝑖 ≤ 3𝑡 − 1 

                 𝑓∗(𝑢𝑖𝑣𝑖) = 1, 1 ≤ 𝑖 ≤ 3𝑡 

Then 𝑒𝑓 (0)  =  3𝑡 −  1, 𝑒𝑓 (1)  = 3𝑡 

Therefore |𝑒𝑓(𝑖)  −  𝑒𝑓(𝑗)|  ≤  1 for all 𝑖, 𝑗 ∈  {0,1} 

Case (ii): 𝑛  ≡  1 (𝑚𝑜𝑑 3) 
             Let 𝑛 =  3𝑡 + 1 

Define 𝑓∗(𝑢i𝑢i+1) =  0, 1 ≤  𝑖 ≤
 3𝑡  
           𝑓∗  (𝑢i𝑣i) = 1, 1 ≤  𝑖 ≤
 3𝑡 + 1 

Then 𝑒𝑓(0)  =  3𝑡 , 𝑒𝑓(1)  =  3𝑡 + 1 

Therefore |𝑒𝑓(𝑖)  − 𝑒𝑓(𝑗)|  ≤  1 for all 𝑖, 𝑗 ∈  {0,1}

Case(iii): 𝑛  ≡  2 (𝑚𝑜𝑑 3) 
           Let 𝑛 =  3𝑡 + 2 
Define 𝑓∗(𝑢𝑖𝑢𝑖+1) = 0, 1 ≤ 𝑖 ≤ 3𝑡 + 1 

                 𝑓∗(𝑢𝑖𝑣𝑖) = 1, 1 ≤ 𝑖 ≤ 3𝑡+2 

Then 𝑒𝑓(0)  =  3𝑡 + 1 , 𝑒𝑓(1)  =  3𝑡 + 2 

Therefore |𝑒𝑓(𝑖) − 𝑒𝑓(𝑗)| ≤ 1 for all 𝑖, 𝑗 ∈ {0,1} 

For 1 ≤ 𝑖 ≤ 𝑛 − 1, 𝑓∗(𝑒𝑖) = 0 

For 1 ≤ 𝑖 ≤ 𝑛, 𝑓∗(𝑒𝑖
′) = 1 
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𝑆𝑢1
= 𝑓∗(𝑒1) + 𝑓∗(𝑒1

′) = 1 

For 2 ≤ 𝑖 ≤ 𝑛 − 1, 𝑆𝑢𝑖
= 𝑓∗(𝑒𝑖−1) + 𝑓∗(𝑒𝑖) + 𝑓∗(𝑒𝑖

′) = 1 

        𝑆𝑢𝑛
= 𝑓∗(𝑒𝑛−1) + 𝑓∗(𝑒𝑛

′ ) = 1 

For every  𝑣 ∈ 𝑉(𝐵𝑛), 𝑛 ≥ 3, 𝑆𝑣 is equal to 1 or prime. 

Therefore 𝑓 is a prime mean cordial labeling.  

Hence  𝐵𝑛 , 𝑛 ≥ 3 is prime mean cordial graph 

Example :1.4 Prime mean cordial labeling of the Brush graph 𝑩6 is given below: 

 

                                                                           Figure 2 

Theorem: 1.5 The graph obtained by identifying (fusing) any two vertices in a brush graph 𝐵n 

is a prime  mean cordial graph. 

Proof:  

Let 𝑽(𝑩n)  =  {𝒖1, 𝒖2, …  𝒖n , 𝒗1, 𝒗2 , … . , 𝒗n} 

𝐸(𝐵n)  =  {𝑢i𝑢i+1: 1 ≤  𝑖 ≤  𝑛 –  1} ∪ {𝑢i , 𝑣i : 1 ≤  𝑖 ≤  𝑛} 

Let 𝐺k be the graph obtained by fusing any two vertices in 𝐵n. Here |𝑉(𝐺k)|  =
 2𝑛 −  1.  

Define 𝑉(𝐵n)  →  {0,1,2, …  𝑞} as follows: 

Case (i): 𝑛 ≡  0 (𝑚𝑜𝑑 3) 
Let 𝑛 =  3𝑡 

Define 𝑓∗(𝑢𝑖𝑢𝑖+1) = 0, 1 ≤ 𝑖 ≤ 3𝑡 − 2 

                 𝑓∗(𝑢𝑖𝑣𝑖) = 1, 1 ≤ 𝑖 ≤ 3𝑡-1 

Then   𝑓∗(𝑢𝑛𝑣𝑛) = 0 

Here 𝑒𝑓(0)  =  3𝑡 −  1, 𝑒𝑓(1)  =  3𝑡 –  1 

Therefore |𝑒𝑓(𝑖)  − 𝑒𝑓(𝑗)|  ≤  1 for all 𝑖, 𝑗 ∈  {0,1}  

Case (ii): 𝑛  ≡  1 (𝑚𝑜𝑑 3) 
  Let 𝑛 =  3𝑡 +  1 

Define 𝑓∗(𝑢𝑖𝑢𝑖+1) = 0, 1 ≤ 𝑖 ≤
3𝑡 − 1 

                   𝑓∗(𝑢𝑖𝑣𝑖) = 1, 1 ≤ 𝑖 ≤ 3𝑡 

                 𝑓∗(𝑢𝑛𝑣𝑛) = 0 

Here 𝑒𝑓(0)  =  3𝑡, 𝑒𝑓(1)  =  3𝑡  

Therefore  |𝑒𝑓(𝑖)  − 𝑒𝑓(𝑗)|  ≤  1 for all 𝑖, 𝑗 ∈  {0,1}  

 Case (iii): 𝑛 ≡  2 (𝑚𝑜𝑑 3) 

Let 𝑛 =  3𝑡 +  2 
Define ƒ*(𝑢i𝑢i+1) = 0, 1 ≤ i ≤ 3t   

               𝑓∗(𝑢𝑖𝑣𝑖) = 1, 1 ≤ 𝑖 ≤ 3𝑡 + 1 

              𝑓∗(𝑢𝑛𝑣𝑛) = 0 

Here  𝑒𝑓(0) =  3𝑡 +  1, 𝑒𝑓(1)   =  3𝑡 +  1 

Therefore |𝑒𝑓(𝑖) − 𝑒𝑓(𝑗)| ≤ 1 for all 𝑖, 𝑗 ∈ {0,1} 
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For 1 ≤ 𝑖 ≤ 𝑛 − 2, 𝑓∗(𝑒𝑖) = 0 

For 1 ≤ 𝑖 ≤ 𝑛 − 1, 𝑓∗(𝑒𝑖
′) = 1 

Then 𝑓∗(𝑒𝑛
′ ) = 0 

𝑁𝑜𝑤 𝑆𝑢1
= 𝑓∗(𝑒1) + 𝑓∗(𝑒1

′) = 1 

For 2 ≤ 𝑖 ≤ 𝑛 − 2, 𝑆𝑢𝑖
= 𝑓∗(𝑒𝑖−1) + 𝑓∗(𝑒𝑖) + 𝑓∗(𝑒𝑖

′) = 1 

                            𝑆𝑢𝑛−1
= 𝑓∗(𝑒𝑛−2) + 𝑓∗(𝑒𝑛−1

′ ) + 𝑓∗(𝑒𝑛
′ ) = 1 

Therefore for every  𝑣 ∈ 𝑉(𝐵𝑛), 𝑆𝑣 is equal to 1 or prime. 

Therefore  𝑓  is a prime mean cordial labeling.  

Hence  𝐵𝑛 is prime mean cordial graph. 

Example: 1.6 

 

                                                Figure 3. Fusion of 𝒖𝟓 and 𝒖𝟔 in 𝑩𝟔 

 

Theorem: 1.7 A graph 𝐺 = (𝑉, 𝐸) attaching 𝐾1,2 to each pendant vertex of comb graph forms 

prime mean cordialgraph

Proof: 

 Let 𝑉 ((𝑃𝑛 ⊙)𝐾1 ⊙ 𝐾1,2)  =  {𝑢𝑖 , 𝑣𝑖 , 𝑥𝑖 ∶ 1 ≤  𝑖 ≤  𝑛} and 

𝐸 ((𝑃𝑛 ⊙ 𝐾1)  ⊙ 𝐾1,2)  =  {𝑢i𝑢i+1: 1 ≤  𝑖 ≤  𝑛 –  1} ∪ {𝑢𝑖𝑣𝑖 , 𝑣𝑖 𝑦𝑖 , 𝑣𝑖𝑥𝑖 ∶ 1 ≤  𝑖 ≤  𝑛} 

Define 𝑉((𝑃𝑛 ⊙ 𝐾1)  ⊙ 𝐾1,2)  →  {0,1,2, …  𝑞} as follows: 

Case (i): 𝑛 ≡   0 (𝑚𝑜𝑑 3) 

Let 𝑛 =  3𝑡 

Define ƒ*(𝑢i𝑢i+1) = 0,1 ≤ i ≤ 3𝑡-1          

ƒ*(𝑢𝑖𝑣𝑖) = 1,1 ≤  𝑖 ≤  3𝑡 

ƒ*(𝑣i𝑥i) = 0,1 ≤ i ≤ 3𝑡 

ƒ*(𝑣i𝑦𝑖) = 1, 1 ≤ i ≤ 

3t 

Here  𝑒𝑓(0) =  6𝑡 −  1, 𝑒𝑓(1) =  6𝑡   

Therefore |𝑒𝑓(𝑖) − 𝑒𝑓(𝑗)| ≤ 1  for all 𝑖, 𝑗 ∈

 {0,1}  
Case (ii): 𝑛  ≡  1 (𝑚𝑜𝑑 3) 
           Let 𝑛 =  3𝑡 +  1 

Define  𝑓∗( 𝑢i𝑢i+1)  = 1 ≤ 𝑖 ≤ 3𝑡   
𝑓∗(𝑢i𝑣𝑖)  = 1 ≤ 𝑖 ≤ 3𝑡 + 1    
ƒ*(𝑣i𝑥i)=0, 1 ≤ i ≤ 

3𝑡+1 

ƒ*(𝑣iyi)=1,1 ≤ i ≤ 

3𝑡+1 

Here  𝑒𝑓(0) =  6𝑡 +  1, 𝑒𝑓(1) =  6𝑡 +  2 

Therefore |𝑒𝑓(𝑖)  − 𝑒𝑓(𝑗)|  ≤  1  for all 𝑖, 𝑗 ∈  {0,1}  
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Case (iii): 𝑛 ≡  2 (𝑚𝑜𝑑 3) 
 Let 𝑛 =  3𝑡 +  2 
Define ƒ*(𝑢i𝑢i+1) = 0,1 ≤ i ≤ 3𝑡 + 

1    ƒ*(𝑢i𝑣i) = 1,1 ≤ i ≤ 3𝑡+2 

ƒ*(𝑣i𝑥i) = 0, 1 ≤ i ≤ 

3𝑡 ƒ*(𝑣i𝑦𝑖) = 1, 1 ≤ i 

≤ 3𝑡 

Here  𝑒𝑓(0) =  6𝑡 +  1, 𝑒𝑓(1) =  6𝑡 +  2 

Therefore 𝑒𝑓(𝑖)  − 𝑒𝑓(𝑗)|  ≤  1  for all 𝑖, 𝑗 ∈  {0,1}  

For 1 ≤ 𝑖 ≤ 𝑛 − 1, 𝑓∗(𝑒𝑖) = 0 

For 1 ≤ 𝑖 ≤ 𝑛, 𝑓∗(𝑒𝑖
′) = 1 

For 1 ≤ 𝑖 ≤ 𝑛, 𝑓∗(𝑒) = 0 

𝑆𝑢1
= 𝑓∗(𝑒1) + 𝑓∗(𝑒1

′) = 1 

For 2 ≤ 𝑖 ≤ 𝑛 − 1, 𝑆𝑢𝑖
= 𝑓∗(𝑒𝑖−1) + 𝑓∗(𝑒𝑖) + 𝑓∗(𝑒𝑖

′) = 1 

        𝑆𝑢𝑛
= 𝑓∗(𝑒𝑛−1) + 𝑓∗(𝑒𝑛

′ ) = 1 

For 1 ≤ 𝑖 ≤ 𝑛 ,    𝑆𝑣𝑖
=  𝑓∗(𝑒1

′)+𝑓∗(𝑒𝑖
′′)+𝑓∗(𝑒𝑖

′′′) = 2 

Therefore for every  𝑣 ∈ 𝑉 ((Pn ⊙ 𝐾1) ⊙ 𝐾1,2) , 𝑆𝑣 is equal to 1 or prime. 

Therefore 𝑓  is a prime mean cordial labeling.  

Hence (Pn ⊙ 𝐾1)  ⊙ 𝐾1,2) is a prime mean cordial graph. 

Example: 1.8 

Prime mean cordial labelling of (𝑃4⊙K1) ⊙K1,2 

 

 
 Theorem: 1.9. The graph 𝑇𝐿𝑛⨀𝐾1 is prime mean cordial. 

 Proof:  

Let 𝑇𝐿𝑛 be the triangular ladder. 

Let 𝑉( 𝑇𝐿𝑛⨀𝐾1) = {𝑢𝑖, 𝑣𝑖, 𝑥𝑖, 𝑦𝑖 : 1 ≤ 𝑖 ≤ 𝑛}     

𝐸( 𝑇𝐿𝑛⨀𝐾1) = {𝑢𝑖𝑢𝑖+1, 𝑣𝑖𝑣𝑖+1: 1 ≤ 𝑖 ≤ 𝑛 − 1} ⋃ {𝑢𝑖𝑣𝑖, 𝑢𝑖 𝑥𝑖, 𝑣𝑖𝑦𝑖: 1 ≤ 𝑖 ≤ 𝑛 −
1} ⋃{𝑢𝑖𝑣𝑖+1: 1 ≤ 𝑖 ≤ 𝑛 − 1} 

Define 𝑉(𝑇𝐿𝑛⨀𝐾1) → {0,1,2, … , 𝑞} as follows: 

Case (i): 𝑛 ≡ 0 (𝑚𝑜𝑑 3) 

Let 𝑛 = 3𝑡 

Define 𝑓∗(𝑢𝑖𝑢𝑖+1) = 0, 1 ≤ 𝑖 ≤ 3𝑡 − 1 

            𝑓∗(𝑣𝑖𝑣𝑖+1) = 1, 1 ≤ 𝑖 ≤ 3𝑡 + 1 

            𝑓∗(𝑢𝑖𝑥𝑖) = 1, 1 ≤ 𝑖 ≤ 3𝑡 
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            𝑓∗(𝑢𝑖𝑦𝑖) = 1, 1 ≤ 𝑖 ≤ 3𝑡 

           𝑓∗(𝑢𝑖𝑣𝑖) = 0, 1 ≤ 𝑖 ≤ 3𝑡 

           𝑓∗(𝑢𝑖𝑣𝑖+1) = 0, 1 ≤ 𝑖 ≤ 3𝑡 − 1 

Then 𝑒𝑓(0) = 9𝑡 − 2 and 𝑒𝑓(1) = 9𝑡 − 1 

Therefore |𝑒𝑓(𝑖) − 𝑒𝑓(𝑗)| ≤ 1 for all 𝑖, 𝑗 ∈ {0,1} 

Case (ii): n  ≡  1 (𝑚𝑜𝑑 3) 

           Let 𝑛 =  3𝑡 +  1 

Define 𝑓∗(𝑢𝑖𝑢𝑖+1) = 0, 1 ≤ 𝑖 ≤ 3𝑡 

            𝑓∗(𝑣𝑖𝑣𝑖+1) = 1, 1 ≤ 𝑖 ≤ 3𝑡 

            𝑓∗(𝑢𝑖𝑥𝑖) = 1, 1 ≤ 𝑖 ≤ 3𝑡 + 1 

            𝑓∗(𝑢𝑖𝑦𝑖) = 1, 1 ≤ 𝑖 ≤ 3𝑡+1 

           𝑓∗(𝑢𝑖𝑣𝑖) = 0, 1 ≤ 𝑖 ≤ 3𝑡 

           𝑓∗(𝑢𝑖𝑣𝑖+1) = 0, 1 ≤ 𝑖 ≤ 3𝑡 

Then 𝑒𝑓(0) = 9𝑡 + 1 and 𝑒𝑓(1) = 9𝑡 + 2 

Therefore |𝑒𝑓(𝑖) − 𝑒𝑓(𝑗)| ≤ 1 for all 𝑖, 𝑗 ∈ {0,1} 

Case (iii): 𝑛 ≡  2 (𝑚𝑜𝑑 3) 

           Let 𝑛 =  3𝑡 +  2 

Define 𝑓∗(𝑢𝑖𝑢𝑖+1) = 0, 1 ≤ 𝑖 ≤ 3𝑡 + 1 

            𝑓∗(𝑣𝑖𝑣𝑖+1) = 1, 1 ≤ 𝑖 ≤ 3𝑡 + 1 

            𝑓∗(𝑢𝑖𝑥𝑖) = 1, 1 ≤ 𝑖 ≤ 3𝑡 + 2 

            𝑓∗(𝑣𝑖𝑦𝑖) = 1, 1 ≤ 𝑖 ≤ 3𝑡+2 

           𝑓∗(𝑢𝑖𝑣𝑖) = 0, 1 ≤ 𝑖 ≤ 3𝑡 + 2 

           𝑓∗(𝑢𝑖𝑣𝑖+1) = 0, 1 ≤ 𝑖 ≤ 3𝑡 + 1 

Then 𝑒𝑓(0) = 9𝑡 + 4 and 𝑒𝑓(1) = 9𝑡 + 5 

Therefore |𝑒𝑓(𝑖) − 𝑒𝑓(𝑗)| ≤ 1 for all 𝑖, 𝑗 ∈ {0,1} 

For 1 ≤ 𝑖 ≤ 𝑛 − 1, 𝑓∗(𝑒𝑖) = 0 

For 𝑛 ≤ 𝑖 ≤ 2𝑛 − 2, 𝑓∗(𝑒𝑖) = 1 

For 1 ≤ 𝑖 ≤ 𝑛, 𝑓∗(𝑒𝑖
′) = 0 

For 1 ≤ 𝑖 ≤ 𝑛, 𝑓∗(𝑒𝑖
′′) = 0 

For 1 ≤ 𝑖 ≤ 2𝑛 − 2, 𝑓∗(𝑒𝑖
′′′) = 0 

Then  𝑆𝑢1
= 𝑓∗(𝑒1) + 𝑓∗(𝑒1

′) + 𝑓∗(𝑒1
′′′) + 𝑓∗(𝑒2

′′′) = 1 

For 2 ≤ 𝑖 ≤ 𝑛 − 1, 𝑆𝑢𝑖
= 𝑓∗(𝑒𝑖−1) + 𝑓∗(𝑒𝑖) + 𝑓∗(𝑒𝑖

′) + 𝑓∗(𝑒2𝑖−1
′′′ ) + 𝑓∗(𝑒2𝑖

′′′) = 1 

Then 𝑆𝑢𝑛
= 𝑓∗(𝑒𝑛−1) + 𝑓∗(𝑒𝑛

′ ) + 𝑓∗(𝑒2𝑛−1
′′′ ) = 1 

Now 𝑆𝑣1
= 𝑓∗(𝑒𝑛) + 𝑓∗(𝑒1

′′) + 𝑓∗(𝑒1
′′′) = 1 

For 1 ≤ 𝑖 ≤ 𝑛 − 2, 𝑆𝑣𝑖+1
= 𝑓∗(𝑒3𝑖) + 𝑓∗(𝑒3𝑖+1) + 𝑓∗(𝑒𝑖+2

′′′ ) + 𝑓∗(𝑒𝑖+1
′′ ) + 𝑓∗(𝑒𝑖+1

′′′ ) = 1 

Then 𝑆𝑣𝑛
= 𝑓∗(𝑒2𝑛−2) + 𝑓∗(𝑒𝑛

′′) + 𝑓∗(𝑒2𝑛−2
′′′ ) + 𝑓∗(𝑒2𝑛−1

′′′ ) = 1 

Therefore for every 𝑣 ∈ 𝑉(𝑇𝐿𝑛⨀𝐾1), 𝑆𝑣 is equal to 1 or prime.  



PRIME MEAN CORDIAL LABELING OF GRAPHS Section A-Research paper 

 

115 
Eur. Chem. Bull. 2023,12(Special Issue 13), 109-115 

Therefore 𝑓 is a prime mean cordial labeling. 

Hence 𝑇𝐿𝑛⨀𝐾1 is a prime mean cordial graph. 

Example:2.0 

 

Figure 5. 𝑻𝑳𝟑⨀𝑲𝟏 

 

 

Conclusion 

In this paper we introduced the concept of prime mean cordial labeling and studied the prime 

mean cordial labeling behavior of few graphs.  
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