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Abstract:  

In this paper, a diseased fractional-order prey-predator model in one predator population and refuge in the 

other is modelled and investigated using a Holling type II functional response. Critical points are used to 

examine a model’s stability using its eigenvalues. The solutions’ boundness, uniqueness, existence, and 

positivity have also been analysed. Critical points have been used to study the model’s locally asymptotically 

stable properties, and the Lyapunov function has been used to examine the model’s globally asymptotically 

stable properties. Finally, numerical simulations are shown to verify the analytical solutions. 
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1 Introduction 

Fractional calculus is a popular field that aims to 

realize real-life phenomena using non-integer 

derivative models. In this field, non-integer series 

derivatives are used for differentiation and 

integration. The sequence is a derivative that meets 

the following additional criteria rather than being 

based on integers: The prime function is what we 

have when the order of the derivative is zero, and 

the first-order integer sequence derivative is what 

we have when the sequence is one [19]. Fractional 

derivatives have a memory impact and conserved 

physical properties [3], [7]. The theory of 

fractional calculus and its illustrative applications 

in this context are continuously growing in 

popularity on a worldwide level [14]. In order to 

simulate real-world issues, a large number of 

unique fractional operators have been created with 

various properties [8].Recently, there has been a 

rise in the demand for developing models for 

dynamical systems based on fractional-order 

differential equations [2]. The fractional order 

derivative is defined by a number of methods. The 

initial conditions for Caputo fractional differential 

equations are expressed similarly to how they are 

for integer-order differential equations, and the 

Caputo definition is more comprehensive [15], 

[16]. The main reason is that fractional-order 

differential equations are closely related to fractals 

and naturally related to memory-based systems, 

which are present in the majority of biological 

systems [6]. Studies on the stability of fractional-

order predator-prey systems are still in their 

infancy because there are few theories available for 

examining their dynamics [4], [17]. In this study, 

we investigated the following fractional-order 

prey-predator model that incorporates a prey 

refuge and a Holling type II functional response: 

Numerous researchers have examined the dynamic 

behaviour of the typical predator-prey system 

below, which includes a prey refuge [1], [12]. In 

biology and ecology, a refuge is a place where an 

organism gets refuge from predators by hiding in a 

place that is distant, difficult to locate, or otherwise 

unfavourable to predators [9]. When refuges are 

present, populations of both predators and prey are 

much greater due to population dynamics, and an 

area can support a significant number of additional 

species [10]. It is obvious that the presence of prey 

refuges can have a significant impact on the 

coexistence of predators and their prey. If the 

proportion of prey in a refuge reduces as prey 

biomass rises, refuges have a stabilising effect [5], 

[13]. This is valid when there are a fixed number 

of prey refuges in the system, but the proportion of 

prey in refuges also rises when predator biomass 

and predation rates grow [6], [11]. Numerous 

authors have researched the issue of predator-prey 

interactions in the presence of a prey refuge [18]. 

This study’s goal is to examine the dynamics of the 

proposed fractional-order eco-epidemiological 

system and demonstrate the global stability 

analysis of all biologically possible equilibrium 

points. In this paper, solutions to the proposed 

fractional-order eco-epidemiological system, in 

which prey are infected by a disease, are 

investigated for existence, uniqueness, non-

negativity, and boundness. 

 

The paper is followed as: A mathematical model 

has been formulated in the section 2. The 

Preliminary dynamics of the fractional order 

dynamical system have been studied in section 3. 

The Uniqueness and boundedness of the solution 

of the proposed model have been studied in section 

4.In section 5 stability analysis of the proposed 

model have been examined. In section 6 numerical 

simulations are examined for the proposed model. 

In section 7 we give some main outcomes of our 

work. 

 

2 Model Formulation 

The nonlinear differential equation is 

  (2.1) 

 

and the positive conditions are described as 

L(0) = L0 ≥ 0,M(0) = M0 ≥ 0,N(0) = N0 ≥ 0. 

 

A System (2.1) has all positive parameters.The 

detailed environmental meanings of the parameters 

are shown in the Table. 
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Parameters Environmental representation Units 

r Prey growth rate per day (t−1) 

L Susceptible Prey number per unit area (tons) 

M Infected Prey number per unit area (tons) 

N Predator number per unit area (tons) 

K Carrying capacity of environment number per unit area (tons) 

a1 Constant of Half-saturation m 

ζ1 Predation rate of Susceptible prey per day (t−1) 

b1 Predation rate of Infected prey per day (t−1) 

c Predator-to-prey conversion rate. 0 ≤ C ≤ 1 

d1 Death rate of infected prey per day (t−1) 

d2 Death rate of Predator population per day (t−1) 

λ Infection rate per day (t−1) 

g Refuge constant of Prey m−1 

 

It is convenient to scale variables to minimize the amount of the system (2.1) parameters as 

 and to consider dimensionless time t = λKT. Transformation leads to dimen- 

sional equations 

  (2.2) 

 

subject to the positive conditions l(0) = l0 ≥ 0, m(0) = m0 ≥ 0, n(0) = n0 ≥ 0. The fractional system is 

  (2.3) 

subject to the positive conditions l(0) = l0 ≥ 0, m(0) = m0 ≥ 0, n(0) = n0 ≥ 0. 

 

3 Preliminaries 

In this section, we provide basic definitions, significant results, and characteristics of fractional differential 

equations that are useful in the proof of theorems. 

 

DEFINITION 3.1 The Caputo fractional derivative of order α is defined as 

 
 

where t ≥ 0, f ∈ Cn([0,+∞),R) and Γ is a Gamma function. 

 

LEMMA 3.1 Consider a system of fractional order caputo derivatives 
CDt

αx(t) = f(t,x(t)),t > 0,x(0) ≥ 0 , α ∈ (0,1], 

 

where f : (0,∞)×Ω → Rn. If f(t,x(t)) satisfies the locally Lipschitz condition with respect to x, then the equation 

on (0,∞) × Ω has a unique solution. 

 

THEOREM 3.1 Consider the N-dimensional fractional differential equation system 

 
 

Where A is the arbitrary constant N ∗ N is the matrix and α ∈ (0,1). 
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(i) The solution x = 0 is asymptotically stable if and only if all eigenvalues λij,j = 1,2,3,...N of A satisfies

. 

(ii) The solution x = 0 is stable if and only if all the eigenvalues with  have same geometric 

multiplicity and algebraic multiplicity. THEOREM 3.2 Consider the fractional-order system 

 
with x ∈ Rn and α ∈ (0,1).The above system’s equilibrium points are the solutions to the equation f(x) = 0. If 

all of the eigenvalues of the Jacobian matrix J = dx
df evaluated at equilibrium satisfy , then the 

equilibrium point is considered to be locally asymptotically stable. 

 

4 Uniqueness of Solutions 

In this section,the boundedness of the system (2.3) solution has been examined. The system of fractional orders 

is as follows: 

. 

 

Theorem 1 For the non-negative initial conditions, the fractional order system (2.3) has an unique solution. 

Proof. A sufficient condition of system (2.3) in the region χ × (0,T] where χ = (L,M,N) ∈ R3 : max(|L|,|M|,|N|) ≤ 

η. Now, let us define a mapping V(X) = (V1(X),V2(X),V3(X)) where 

. 
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Where, 

, 

Thus V(X) satisfies the Lipschitz condition. 

So, the solution of system (2.3) exist and has unique. 

 □ 

4.1 Boundedness of solutions 

Theorem 2 All of the system (2.3) solutions beginning at  are positive and bounded. 

Proof. Let l(t),m(t),n(t) be any solution of the system with positive initial conditions. 

, 

we have limsupt → l(t) ≤ 1. 

 

Defining a function 

W(t) = l(t) + m(t) + n(t). 

Taking the Caputo time derivative of W and adding it to the system’s solutions gives 

 
Since where γ=min{s4,s6} 

So, we have 

. 

Using the theorem of differential inequality, we obtain at 

. 

For t → ∞, we have 

As a result, all solutions of the system starting at  are bounded in the region for any ϵ > 0. 

. 

 

5 Equilibrium Points and Stability analysis 

(i) The trivial equilibrium point is E0(0,0,0). 

(ii) The infected prey and predator-free equilibrium point is E1(1,0,0). 

(iii) The infected-free equilibrium point E2(¯l,0,n¯) where  and  

(iv) The Predator-free equilibrium point E3(ˆl,m,ˆ 0) where  . 

(v) The interior equilibrium point E∗(L∗,M∗,N∗) where 

l∗ l∗ l∗ 

and l∗ is a unique positive root of a quadratic equation PS2 + QS + R = 0, with 

P = s1(1−g)(cs2+cs5−s6), Q = (1−g)(cs5−s6)(−s1+s3s1)+s2c(−s1))+s3(s6+(s6−cs2)s1), R = −s3((1 − g)(s1)(cs5 − s6) 

+ (cs2(s4) − s3s6(1 + s1))). 
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5.1 Stability Analysis 

In order to analyse local stability around various equilibrium points we compute the Jacobian matrix.At each 

given point (L,M,N), the Jacobian matrix is given by 

 
 

where 

, 

 

Theorem 3 E0(0,0,0) is the trivial equilibrium point which is unstable. 

Proof. The Jacobian matrix at an equilibrium point E0 is given by 

 
 

The characteristic equation that represents the Jacobian matrix J at the point E0(0,0,0) is 

(λ1 − s1)(λ2 + s4)(λ3 + s6) = 0 

 

The eigenvalues at E(0,0,0) are λ1=−s4,λ2=s1,λ3=−s6. 

Thus,  

 

Therefore, E0(0,0,0) is unstable. □ 

 

Theorem 4 The infected free and predator free equilibrium point E1(1,0,0) is stable if cs2 < s6 and 1 < s4. 

Proof. The Jacobian matrix at an equilibrium point J(E1) is given by 

. 

 

The characteristic equation of the above Jacobian matrix is 

. 

Here 

Thus,  and . 

 

E1 is stable if cs2 < s6 and 1 < s4. □ 

 

Theorem 5 The infected-free equilibrium point E2(¯l,0,n¯) is locally asymptotically stable if P,R,PQ− R are 

positive. 

Proof. The Jacobian matrix at an equilibrium point J(E2) is given by 
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where 

, 

 

The characteristic equation for J(E2) is 

λ3 + Pλ2 + Qλ + R = 0, 

 

where 

P = −u11 − u22, 

Q = −u31u13 + u22u11, R = u13u22u31. 

 

According to the Routh-Hurwitz criteria, if and only if P, R, and PQ−R are all positive, then all of the roots of 

the characteristic equation have negative real parts. 

 

Thus,  and . 

 

The infecte-free equilibrium point E2 is locally asymptotically stable. □ 

 

Theorem 6 The predator-free equilibrium point E3(ˆl,m,ˆ 0) is locally asymptotically stable if s6 > c(s2 + s5). 

Proof. The Jacobian matrix at an equilibrium point E3 is given by 

 
where 

. 

 

The characteristic equation corresponding to J(E3) is 

λ3 + Pλ2 + Qλ + R = 0. 

 

where 

P = −u11 − u33, 

Q = −u21u12 + u33u11, R = u12u21u33. 

 

According to the Routh-Hurwitz criteria, if and only if P, R, and PQ−R are all positive, then all of the roots of 

the characteristic equation have negative real parts. 

Therefore, the predator-free equilibrium point E3 is locally asymptotically stable.  
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Theorem 7 The interior equilibrium point E∗ is locally asymptotically stable. 

Proof. 

 
 

where 

, 

 

where 

P = −n11 − n22,Q = −n21n12 + n22n11 − n13n31 + n23n32, 

R = n13(−n22n31 + n21n32) + n23(n12n31 − n11n32) 

 

The characteristic equation is given by 

λ3 + Pλ2 + Qλ + R = 0 

According to Routh-Hurwitz criterion, P,R and PQ − R must all be positive, the characteristic of all the roots 

be negative. 

Hence, E∗ is hence locally asymptotically stable. 

 

6 Global Stability Analysis 

THEOREM 6.1 The equilibrium point E1 is globally asymptotically stable when 1 < s4 and s6(s3+l) < 

cs2. 

Proof. Consider a Lyapunov function 

. 

Applying the caputo fractional derivative, we obtain 

 

 
 

Thus,1 < s4 and s6(s3 + l) < cs2. 

 

Therefore, E1 is globally asymptotically stable. □ 

 

THEOREM 6.2 The infected prey equilibrium point E2 is globally asymptotically stable 

if  and  . 

 

Proof. Define a Lyapunov function 
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Applying the caputo fractional derivative, we obtain 

. 

 

Hence,  Therefore, the infected prey equilibrium point E3 is globally 

asymptotically stable. □ 

 

THEOREM 6.3 The predator free equilibrium point E3 is globally asymptotically stable if s6 > cs5 + 

¯ 

 

Proof. Define a Lyapunov function 

 
 

Applying the caputo fractional derivative, we obtain 

 
 

Hence. 

  
 

Therefore, E3 is globally asymptotically stable. 

 

 
 

Proof Consider a positive Lyapunov function 

 
 

Applying the caputo fractional derivative, we obtain 
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we conclude that E∗ is globally asymptotically stable. 

  

7 Numerical Analysis 

In this section, we present some numerical 

simulation results for Caputo-sense fractional-

order ecoepidemic models. To accomplish this, we 

use Diethelm et al.’s predictor-corrector approach 

to solve the defined model. Since there are no field 

data available, the simulations are carried out with 

the following assumed parameter values: 

The parameter values are s1 = 0.5;s2 = 0.25;S3 = 

0.3;S4 = 0.1;S5 = 0.4;S6 = 0.1c =0.5;m = 0.3. Then 

the positive equilibrium point  

E∗(0.61561;0.0325119;0.525293) for the 

derivative of α = 1 becomes locally asymptotically 

stable is shown in figure (1).The positive 

equilibrium point  

E∗(0.61561;0.0325119;0.525293) for the 

derivative of α = 0.94 also becomes locally 

asymptotically stable is shown in figure (2). 

 

The parameter values are s1 = 0.5,s2 = 0.2,s3 = 0.3,s4 = 0.3 = 2,s5 = 0.4,s6 = 0.2,c =0.5,g=variable. 

 
Figure 1: Time series and Phase portrait for the equilibrium point E∗ for system (2.3) for α = 1 

 

 
Figure 2: Time series and Phase portrait for the equilibrium point E∗ for system (2.3) for α = 0.94 
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Let us fix the value of refuge g as variable.From 

figure (1), it is observed that the system (2.3) 

undergoes an unstable solution for the derivative 

value of α = 1 for the equilibirum point E2 is shown 

in figure (3).The fractional-order derivative allows 

the system’s solution (2.3) to become stable at 0.94 

for the equilibirum point E2, as shown in figure 

(4).Therefore, it can be concluded from figures (3) 

and (4) that the equilibrium point E2 of the system 

might change from unstable to stable due to the 

fractional order derivative.Therefore, it may be 

stated that the fractional-order derivative may 

improve system stability. From Figure (5), we can 

observe that the density of the susceptible prey 

population decreases as the refuge constant 

increases. Figure (5) shows an increase in infected 

prey population as the refuge constant m increases 

from 0.2 to 0.6.Therefore, it can be concluded from 

Figure (5) that the stability of our suggested system 

is significantly affected by the fractional-order 

derivative. 

 

8 Conclusion 

In this study, we investigated a condition when a 

predator hunts on both susceptible and ill prey, 

which is known as a refuge in a prey.While the 

diseased prey density decreases, the susceptible 

prey density rises as the diseased prey refuge 

increases. A decrease in the population of diseased 

prey and an increase 

 

 
Figure 3: Unstable solution for equilibrium point E2 of system (2.3) for α = 1 

 

 
Figure 4: Stable solution for equilibrium point E2 of system (2.3) for α = 0.94 
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Figure 5: Different values of refuge g = 0.2,0.4,0.6 for the derivative of α = 0.94 in the number of predators 

and prey are two effects of raising the susceptible predation rate. This study illustrates the complex behaviour 

of the suggested model.The infected-free and endemic equilibrium points emerge and become stable, 

particularly when the infected refuge and susceptible prey predation rate fall within a specified range. The 

infected prey refuge in the model generates complex dynamics. 
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