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1. Introduction 

 Let Γ𝑘 = {𝑀 = (𝑚1, 𝑚2, 𝑚3, . . . , 𝑚𝑘): 𝑚𝑖 > 0, ∑𝑘
𝑖=1 𝑚𝑖 = 1}, 𝑘 ≥ 2 be the collection of all discrete finite 

probabilities.. The restriction here to discrete distributions is exclusively for convenience, proportionate results 

hold for continuous distributions. Let’s consider  𝑚𝑖 ≥ 0 for some 𝑖 = 1,2,3. . . , 𝑘 at that point we have to 

assume that 

 0𝛩(0) = 0𝛩 (
0

0
) = 0. 

Csiszar’s 𝛩- dissimilarity [2] defined as 

                     𝐶𝛩(𝑀, 𝑁) = ∑𝑘
𝑖=1 𝑛𝑖𝛩 (

𝑚𝑖

𝑛𝑖
)                                                                                                     (1.1) 

Comparably [7] initiated a generalized measure of information determined by  

                     𝑆𝛩(𝑀, 𝑁) = ∑𝑘
𝑖=1 𝑛𝑖𝛩 (

𝑚𝑖+𝑛𝑖

2𝑛𝑖
)                                                                                               (1.2) 

 

where Θ: (0, ∞) → 𝑅 (set of real no.) is real, continuous as well as convex function and 𝑀 =
(𝑚1, 𝑚2, . . . , 𝑚𝑘), 𝑁 = (𝑛1, 𝑛2, . . . , 𝑛𝑘) ∈ Γ𝑘, where 𝑚𝑖 and 𝑛𝑖 are probability mass functions. By properly 

describing the convex function, many studied dissimilarities may be obtained from such generalised measures. 

the following standards. 

 

The measures (1.3), (1.4), and (1.5) below are all generalised dissimilarity measures with one specification 

[12], where 𝑟 ∈ 𝑅 is a criteria. 

 

Relative Information of type “r”  

𝜓𝑟(𝑀, 𝑁) = [𝑟(𝑟 − 1)]−1 [∑

𝑘

𝑖=1

𝑚𝑖
𝑟𝑛𝑖

1−𝑟 − 1] , 𝑟 ≠ 0,1.                                                            (1.3) 

 

Unified Relative JS and AG Dissimilarity of type “r” 

Ω𝑟(𝑀, 𝑁) = [𝑟(𝑟 − 1)]−1 [∑

𝑘

𝑖=1

𝑚𝑖 (
𝑚𝑖 + 𝑛𝑖

2𝑚𝑖
)

𝑘

− 1] , 𝑟 ≠ 0,1.                                                (1.4) 

 

Relative Entropy [8] 

𝐾(𝑀, 𝑁) = ∑

𝑘

𝑖=1

𝑚𝑖log
𝑚𝑖

𝑛𝑖
 .                                                                                                               (1.5) 

 

Chi-square dissimilarity [9] 

𝜒2(𝑀, 𝑁) = ∑

𝑘

𝑖=1

(𝑚𝑖 − 𝑛𝑖)2

𝑛𝑖
 .                                                                                                          (1.6) 

 

Relative Jensen-Shannon Dissimilarity [11] 

𝐹(𝑀, 𝑁) = ∑

𝑘

𝑖=1

𝑚𝑖log
2𝑚𝑖

𝑚𝑖 + 𝑛𝑖
.                                                                                                        (1.7) 

Renyi’s “p” order entropy [10] 

𝑅𝑝(𝑀, 𝑁) = ∑

𝑘

𝑖=1

𝑚𝑖
𝑝

𝑛𝑖
𝑝−1 , 𝑝 > 1                                                                                                           (1.8) 

 

2. Difference of Generalized Dissimilarities 

 In literature, the corresponding theorem is widely recognised [1]. 

 

Theorem 2.1. If the function 𝛩 is convex as well as  normalized, i.e., 𝛩′′(𝑢) ≥ 0  ∀  𝑢 > 0 and 𝛩(1) = 0 

individually, at that point then 𝐶𝛩(𝑀, 𝑁) and its adjoint 𝐶𝛩(𝑁, 𝑀) are both non-negative and convex within the 

combine of probability distribution (𝑀, 𝑁) ∈ 𝛤𝑘 × 𝛤𝑘.  
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The inequalities we now have with reference to the variance of generalised dissimilarity measurements and 

evaluation follow the same lines as the conclusion put out by [12].   

 

Theorem 2.2. Let 𝛩1, 𝛩2: 𝐼 ⊂ 𝑅+ → 𝑅 be two convex as well as normalized functions, i.e., 𝛩′′1(𝑢), 𝛩′′2(𝑢) ≥
0  ∀  𝑢 > 0 and 𝛩1(1) = 𝛩2(1) = 0 correspondingly and let the subsequent supposition. 

(i) 𝛩1 and 𝛩2 are twice differentiable on (𝑎, 𝑏), 0 < 𝑎 ≤ 1 ≤ 𝑏 < ∞ with 𝑎 ≠ 𝑏. 

(ii) There exist the real constants 𝑥, 𝑋 such that 𝑥 < 𝑋 and  

 𝑥 ≤
𝛩′′

1(𝑡)

𝛩′′
2(𝑡)

≤ 𝑋, 𝛩′′
2(𝑢) ≠ 0  ∀  𝑢 ∈ (𝑎, 𝑏)                                                                                      (2.1) 

If 𝑀, 𝑁 ∈ Γ𝑛, then we have the subsequent inequalities  

 𝑥[𝐶𝛩2
(𝑀, 𝑁) − 𝑆𝛩2

(𝑀, 𝑁)] ≤ 𝐶𝛩1
(𝑀, 𝑁) − 𝑆𝛩1

(𝑀, 𝑁) ≤ 𝑋[𝐶𝛩2
(𝑀, 𝑁) − 𝑆𝛩2

(𝑀, 𝑁)]         (2.2) 

and 𝐶𝛩(𝑀, 𝑁), 𝑆𝛩(𝑀, 𝑁) are provided respectively, by (1.1) and (1.2). 

            Proof. Let's take a look at two functions.  

 

 𝛩𝑥(𝑢) = 𝛩1(𝑢) − 𝑥𝛩2(𝑢)                                                                                                                    (2.3) 

and  

 𝛩𝑋(𝑢) = 𝑋𝛩2(𝑢) − 𝛩1(𝑢).                                                                                                                   (2.4) 

where 𝑥 and 𝑋 are the max. and min. values of the function 
𝛩′′1(𝑢)

𝛩′′2(𝑢)
  ∀  𝑢 ∈ (𝑎, 𝑏).  

Since  

 𝛩1(1) = 𝛩2(1) = 0 ⇒ 𝛩𝑥(1) = 𝛩𝑋(1) = 0                                                                                    (2.5) 

and the functions 𝛩1(𝑡) and 𝛩2(𝑡) are twice differentiable. Then displayed of (2.1), we hold 

 𝛩′′𝑥(𝑡) = 𝛩′′1(𝑡) − 𝑥𝛩′′
2(𝑡) = 𝛩′′

2(𝑡) [
𝛩′′

1(𝑢)

𝛩′′
2(𝑢)

− 𝑥] ≥ 0                                                            (2.6) 

and  

 𝛩′′𝑋(𝑡) = 𝑋𝛩′′2(𝑡) − 𝛩′′
1(𝑡) = 𝛩′′

2(𝑡) [𝑋 −
𝛩′′

1(𝑢)

𝛩′′
2(𝑢)

] ≥ 0.                                                         (2.7) 

We can assert that the functions 𝛩𝑥(𝑢) and 𝛩𝑋(𝑢)  are convex and normalised on (a,b) in view (2.5), (2.6), and 

(2.7). 

Now, by using linearity property, we hold 

 

      𝐶𝛩𝑥
(𝑀, 𝑁) − 𝑆𝛩𝑥

(𝑀, 𝑁) = 𝐶𝛩1−𝑥𝛩2
(𝑀, 𝑁) − 𝑆𝛩1−𝑥𝛩2

(𝑀, 𝑁) 

 

                           = 𝐶𝛩1
(𝑀, 𝑁) − 𝑥𝐶𝛩2

(𝑀, 𝑁) − 𝑆𝛩1
(𝑀, 𝑁) + 𝑥𝑆𝛩2

(𝑀, 𝑁) .                              (2.8) 

And 

𝐶𝛩𝑋
(𝑀, 𝑁) − 𝑆𝛩𝑋

(𝑀, 𝑁) = 𝐶𝑋𝛩2−𝛩1
(𝑀, 𝑁) − 𝑆𝑋𝛩2−𝛩1

(𝑀, 𝑁) 

 

                       = 𝑋𝐶𝛩2
(𝑀, 𝑁) − 𝐶𝛩(𝑀, 𝑁) − 𝑋𝑆𝛩2

(𝑀, 𝑁) + 𝑆𝛩1
(𝑀, 𝑁) .                                  (2.9) 

Since, we know that 𝐶𝛩(𝑀, 𝑁) ≥ 𝑆𝛩(𝑀, 𝑁) in [7] Therefore (2.8) and (2.9) can be put together as the 

followings correspondingly  

   [𝐶𝛩1
(𝑀, 𝑁) − 𝑆𝛩1

(𝑀, 𝑁)] − 𝑥[𝐶𝛩2
(𝑀, 𝑁) − 𝑆𝛩2

(𝑀, 𝑁)] ≥ 0                                                           

and  

             𝑋[𝐶𝛩2
(𝑀, 𝑁) − 𝑆𝛩2

(𝑀, 𝑁)] − [𝐶𝛩1
(𝑀, 𝑁) − 𝑆𝛩1

(𝑀, 𝑁)] ≥ 0.         

Or  

 [𝐶𝛩1
(𝑀, 𝑁) − 𝑆𝛩1

(𝑀, 𝑁)] ≥ 𝑥[𝐶𝛩2
(𝑀, 𝑁) − 𝑆𝛩2

(𝑀, 𝑁)]                                                               (2.10) 

and  

 𝑋[𝐶𝛩2
(𝑀, 𝑁) − 𝑆𝛩2

(𝑀, 𝑁)] ≥ [𝐶𝛩1
(𝑀, 𝑁) − 𝑆𝛩1

(𝑀, 𝑁)]                                                              (2.11) 

Execute the result (2.2) simultaneously in (2.10) and (2.11). 

 

3. New Dissimilarity Measure and Properties 

For this subdivision, we'll get a measure of recent dissimilarity,  let 𝛩: (0, ∞) → 𝑅 (set of real numbers) be a 

function determined as  

 𝛩(𝑢) = 𝛩1(𝑢) =
1

𝑢2 − 1, 𝑢 > 0, 𝛩1(1) = 0   .                                                                                (3.1) 

and  

 𝛩′1(𝑢) = −
2

𝑢3 , 𝛩′′
1(𝑢) =

6

𝑢4   .                                                                                                          (3.2) 
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Since 𝛩′′1(𝑢) > 0  ∀  𝑢 > 0 and 𝛩1(1) = 0, therefore 𝛩1(𝑡) is convex as well as normalized function. 

Now substitute 𝛩1(𝑢) in (1.1) we record the new dissimilarity measure below for 𝑀, 𝑁 ∈ Γ𝑘 and 0 < 𝑎 ≤ 1 ≤
𝑏 < ∞, 𝑎 ≠ 𝑏.  

 𝐶𝛩1
(𝑀, 𝑁) − 𝑆𝛩1

(𝑀, 𝑁) = 𝐶𝑆(𝑀, 𝑁) = ∑𝑘
𝑖=1

𝑛𝑖
3(3𝑚𝑖+𝑛𝑖)(𝑛𝑖−𝑚𝑖)

𝑚𝑖
2(𝑚𝑖+𝑛𝑖)2 ≥ 0.                                       (3.3)  

Here, measure 𝐶𝑆(𝑀, 𝑁) is a non- negative and convex in the couple of probability distribution 𝑀, 𝑁 ∈ Γ𝑘 and 

𝐶𝑆(𝑀, 𝑁) = 0 iff  𝑚𝑖 = 𝑛𝑖  ∀  𝑖 = 1,2,3. . . , 𝑘. 

 

Therefore 𝐶𝑆(𝑀, 𝑁) ≠ 𝐶𝑆(𝑁, 𝑀) which shows that 𝐶𝑆(𝑀, 𝑁) is a non- symmetric dissimilarity measure. 

Now, this can be verified by following example:  

Let M be the binomial probability distribution with parameters (l= no. of trials=10,m=Probability of success of 

each trial=0.7 and n= proability of failure of each trial=1-m=0.3) and N is the parameterized Poisson probability 

distribution 

 

(λ= average parameter=lm=7) for the random variable Z, then we have 

 

Table 1      Discrete Probability Distributions for (l=10, m=0.7, n=0.3) are evaluated. 
𝑧𝑖 0 1 2 3 4 5 6 7 8 9 10 

𝑚𝑖 0.0000059 0.000137 0.00144 0.009 0.036 0.102 0.2 0.266 0.233 0.121 0.0282 

𝑛𝑖    0.000911 0.00638 0.022 0.052 0.091 0.177 0.199 0.149 0.13 0.101 0.0709 

 

By using above Table, we get the followings: 

𝐶𝑆(𝑀, 𝑁) = ∑

11

𝑖=1

𝑛𝑖
3(3𝑚𝑖 + 𝑛𝑖)(𝑛𝑖 − 𝑚𝑖)

𝑚𝑖
2(𝑚𝑖 + 𝑛𝑖)2

 

 

                    =
𝑛1

3(3𝑚1 + 𝑛1)(𝑛1 − 𝑚1)

𝑚1
2(𝑚1 + 𝑛1)2

+
𝑛2

3(3𝑚2 + 𝑛2)(𝑛2 − 𝑚2)

𝑚2
2(𝑚2 + 𝑛2)2

. . .
𝑛11

3 (3𝑚11 + 𝑛11)(𝑛11 − 𝑚11)

𝑚11
2 (𝑚11 + 𝑛11)2

 

                 

                  = 43.04518   .                                                                                                                   (3.4) 

  

And 

𝐶𝑆(𝑁, 𝑀) = ∑

11

𝑖=1

𝑚𝑖
3(3𝑛𝑖 + 𝑚𝑖)(𝑚𝑖 − 𝑛𝑖)

𝑛𝑖
2(𝑛𝑖 + 𝑚𝑖)2

 

                    =
𝑚1

3(3𝑛1 + 𝑚1)(𝑚𝑖 − 𝑛𝑖)

𝑛1
2(𝑛1 + 𝑚1)2

+
𝑚2

3(3𝑛2 + 𝑚2)(𝑚2 − 𝑛2)

𝑛2
2(𝑛2 + 𝑚2)2

…
𝑚11

3 (3𝑛11 + 𝑚11)(𝑚11 − 𝑛11)

𝑛11
2 (𝑛11 + 𝑚11)2

 

                  

                 = 0.77422  .                                                                                                                       (3.5) 

Using results  (3.4) and (3.5), it is verified that 𝐶𝑆(𝑀, 𝑁) ≠ 𝐶𝑆(𝑁, 𝑀) i.e. that 𝐶𝑆(𝑀, 𝑁) is a non-symmetrical 

dissimilarity measure. 

 

4. Bounds of New Dissimilarity Measure 

Using Theorem 2.2, we will be able to calculate the bounds of CS(M,N) with regard to other dissimilarity in 

this subdivision. 

 

Proposition 4.1. Suppose 𝑀, 𝑁 ∈ 𝛤𝑘 , 0 < 𝑎 ≤ 1 ≤ 𝑏 < ∞, 𝑎 ≠ 𝑏 and 𝑟 ≥ −2, later we have  

 
6

br+2
[ψr(M, N) − Ωr(N, M)] ≤ CS(M, N) ≤

6

ar+2
[ψr(M, N) − Ωr(N, M)],                                 (4.1) 

where 𝜓𝑟(𝑀, 𝑁), Ω𝑟(𝑁, 𝑀), 𝐶𝑆(𝑀, 𝑁) are given by (1.3),(1.4) and (3.3) correspondingly.  

Proof. Let us observe 

 𝛩2(𝑢) = [𝑟(𝑟 − 1)]−1(𝑢𝑟 − 1), 𝑟 ≠ 0,1, 𝑢 > 0, 𝛩2(1) = 0                                                        (4.2) 

and    

 𝛩′2(𝑢) = (𝑟 − 1)−1𝑢𝑟−1, 𝑟 ≠ 1, 𝛩′′
2(𝑢) = 𝑢𝑟−2  .                                                                       (4.3) 

Since 𝛩′′2(𝑢) > 0  ∀  𝑢 > 0 and 𝛩2(1) = 0, consequently 𝛩2(𝑢) is convex and normalized function 

correspondingly. 

Now by substituting 𝛩2(𝑢) in (1.1) we get:  
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 𝐶𝛩2
(𝑀, 𝑁) = [𝑟(𝑟 − 1)]−1[∑𝑘

𝑖=1 𝑚𝑖
𝑟𝑛𝑖

1−𝑟 − 1] = 𝜓𝑟(𝑀, 𝑁), 𝑟 ≠ 0,1  .                                     (4.4)  

Now, let  

 𝛩𝑟(𝑢) =
𝛩′′1(𝑢)

𝛩′′2(𝑢)
=

6

𝑢𝑟+2 , 𝑢 > 0, 𝑟 ∈ 𝑅   .                                                                                            (4.5) 

where 𝛩′′1(𝑢) and 𝛩′′2(𝑢) accordingly, as indicated by 3.2 and 4.3. 

Also 𝛩′𝑟(𝑢) = −
6(𝑟+2)

𝑢𝑟+3     .                                                                                                                             (4.6) 

Now, we can check that  

 𝛩′𝑟(𝑢) = {
≤ 0 if  𝑟 ≥ −2
≥ 0 if  𝑟 ≤ −2 .

 

It means 𝛩𝑟(𝑢) is monotonically decreasing in 𝑟 ≥ −2 and monotonically increasing in      𝑟 ≤ −2. Therefore, 

for 𝑟 ≥ −2, we have  

 𝑋 = sup
𝑢∈(𝑎,𝑏)

𝛩𝑟(𝑢) = 𝛩𝑟(𝑎) =
6

𝑎𝑟+2                                                                                                      (4.7) 

and  

 𝑥 = inf
𝑢∈(𝑎,𝑏)

𝛩𝑟(𝑢) = 𝛩𝑟(𝑏) =
6

𝑏𝑟+2    .                                                                                                  (4.8) 

The inequality  (4.1) is obtained by utilizing  (3.3),(4.4), (4.7) and (4.8) in (2.2). 

We should now have a look at some exceptional cases at 𝑟 = 0, 𝑟 = 1 and 𝑟 = 2.  

 

Result 4.1. Let 𝑀, 𝑁 ∈ 𝛤𝑘 , 0 < 𝑎 ≤ 1 ≤ 𝑏 < ∞, 𝑎 ≠ 𝑏 and 𝑟 = 0, then we have  

 
6

𝑏2
[𝐾(𝑁, 𝑀) − 𝐹(𝑁, 𝑀)] ≤ 𝐶𝑆(𝑀, 𝑁) ≤

6

𝑎2
[𝐾(𝑁, 𝑀) − 𝐹(𝑁, 𝑀)]  .                                         (4.9) 

Proof. Substitute 𝑟 = 0 in (4.6) we acquire the following.  

 𝜓0(𝑀, 𝑁) = lim
𝑟→0

𝜓𝑠(𝑀, 𝑁) = ∑𝑘
𝑖=1 𝑛𝑖log

𝑛𝑖

𝑚𝑖
= 𝐾(𝑁, 𝑀)   .                                                             (4.10)  

Substitute (4.10) in (4.1) at 𝑟 = 0, and acquire the outcome (4.9). 

 

Result 4.2. Let 𝑀, 𝑁 ∈ 𝛤𝑘 , 0 < 𝑎 ≤ 1 ≤ 𝑏 < ∞, 𝑎 ≠ 𝑏 and 𝑟 = 1, then we have  

 
6

𝑏3
[𝐾(𝑀, 𝑁) − 𝐺(𝑁, 𝑀)] ≤ 𝐶𝑆(𝑀, 𝑁) ≤

6

𝑎3
[𝐾(𝑀, 𝑁) − 𝐺(𝑁, 𝑀)] .                                            (4.11)  

Proof. By substituting 𝑟 = 1 in (4.4) we acquire:  

 𝜓1(𝑀, 𝑁) = lim
𝑟→1

𝜓𝑟(𝑀, 𝑁) = ∑𝑘
𝑖=1 𝑚𝑖log

𝑚𝑖

𝑛𝑖
= 𝐾(𝑀, 𝑁) .                                                             (4.12)  

Substitute (4.12) in (4.1) at 𝑟 = 1, and acquire the outcome (4.11).  

 

Result 4.3. Suppose𝑀, 𝑁 ∈ 𝛤𝑘 , 0 < 𝑎 ≤ 1 ≤ 𝑏 < ∞, 𝑎 ≠ 𝑏 and 𝑟 = 2, then we have  
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4𝑏4 𝜒2(𝑀, 𝑁) ≤ 𝐶𝑆(𝑀, 𝑁) ≤
9

4𝑎4 𝜒2(𝑀, 𝑁)  .                                                                                      (4.13) 

Proof. By substituting 𝑟 = 2 in (4.4) we acquire:  

𝜓2(𝑀, 𝑁) =
1

2
[∑

𝑘

𝑖=1

𝑚𝑖
2

𝑛𝑖
− 1] =

1

2
[∑

𝑘

𝑖=1

𝑚𝑖
2

𝑛𝑖
− 2𝑚𝑖 + 𝑛𝑖] =

1

2
[∑

𝑘

𝑖=1

(𝑚𝑖 − 𝑛𝑖)2

𝑛𝑖
]

=
1

2
𝜒2(𝑀, 𝑁)  .                                                                                                          (4.14) 

By subsituting (4.14) in (4.1) at 𝑟 = 2, we acquire the outcome (4.13).  

 

 

 

5. Relation Among 𝑪𝑺(𝑴, 𝑵) and Renyi’s Entropy 

As 

 
α+β

2
≥ √αβ  ∀  α, β ≥ 0   (A. M. ≥ G. M. ).                                                                                         (5.1) 

Therefore 

 (α + β)2 ≥ 4αβ .                                                                                                                                   (5.2) 

By substituting 𝛼 = 𝑚𝑖 and 𝛽 = 𝑛𝑖 in (5.2), we obtain 

 (mi + ni)
2 ≥ 4mini  .                                                                                                                            (5.3) 

 

Proposition 5.1. Let 𝑀, 𝑁 ∈ 𝛤𝑘, then possesses the successive new relation.  

 𝐶𝑆(𝑀, 𝑁) ≤
1

2
𝑅3(𝑁, 𝑀) −

3

4
𝑅2(𝑁, 𝑀) +

1

4
𝑅4(𝑁, 𝑀) .                                                                  (5.4) 

where 𝐶𝑆(𝑀, 𝑁) is given by (3.3).  
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Proof. Multiply (5.3) by 
𝑚𝑖

2

𝑛𝑖
3(3𝑚𝑖+𝑛𝑖)(𝑛𝑖−𝑚𝑖)

 and sum over all 𝑖 = 1,2,3. . . , 𝑘, we obtain 

 ∑𝑘
𝑖=1

𝑚𝑖
2(𝑚𝑖+𝑛𝑖)2

𝑛𝑖
3(3𝑚𝑖+𝑛𝑖)(𝑛𝑖−𝑚𝑖)

≥ ∑𝑘
𝑖=1

4𝑛𝑖𝑚𝑖
3

𝑛𝑖
3(3𝑚𝑖+𝑛𝑖)(𝑛𝑖−𝑚𝑖)

 

 

 ⇒ ∑𝑘
𝑖=1

𝑛𝑖
3(3𝑚𝑖+𝑛𝑖)(𝑛𝑖−𝑚𝑖)

𝑚𝑖
2(𝑚𝑖+𝑛𝑖)2 ≤ ∑𝑘

𝑖=1
𝑛𝑖

3(3𝑚𝑖+𝑛𝑖)(𝑛𝑖−𝑚𝑖)

4𝑛𝑖𝑚𝑖
3  

 

 ⇒ 𝐶𝑆(𝑀, 𝑁) ≤
1

2
∑𝑘

𝑖=1
𝑛𝑖

3

𝑚𝑖
2 −

3

4
∑𝑘

𝑖=1
𝑛𝑖

2

𝑚𝑖
+

1

4
∑𝑘

𝑖=1
𝑛𝑖

4

𝑚𝑖
3 

 

 ⇒ 𝐶𝑆(𝑀, 𝑁) ≤
1

2
𝑅3(𝑁, 𝑀) −

3

4
𝑅2(𝑁, 𝑀) +

1

4
𝑅4(𝑁, 𝑀). 

Hence the relation (5.4). 

Or  

 
3

4
𝑅2(𝑁, 𝑀) ≤

1

2
𝑅3(𝑁. 𝑀) +

1

4
𝑅4(𝑁, 𝑀) − 𝐶𝑆(𝑀, 𝑁) .                                                                  (5.5) 

 

Note 5.1. 𝐾(𝑀, 𝑁), 𝜒2(𝑀, 𝑁), 𝐹(𝑀, 𝑁) and 𝑅𝑝(𝑀, 𝑁) have been taken from (1.5), (1.6), (1.7), (1.11) and (1.8) 

correspondingly in result 4.1 and proposition 5.1. 

Note 5.2. Limits have been determined in outcomes 4.1 and 4.2 using the L' Hospital Rule. 

Note 5.3. since the function 𝛩𝑟(𝑢)  for 𝑟 ≤ −2 is rising (as demonstrated in the verification of claim 4.1), the 

ensuing inequality results. 
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𝑎𝑟+2
[𝜓𝑟(𝑀, 𝑁) − Ω𝑟(𝑁, 𝑀)] ≤ 𝐶𝑆(𝑀, 𝑁) ≤

6

𝑏𝑟+2
[𝜓𝑟(𝑀, 𝑁) − Ω𝑟(𝑁, 𝑀)] . 

We remove the special cases and proof for these inequalities for various r values. 

 

6. Conclusion 

Since dissimiarity measures have numerous applications in a few areas, it is always fundamentally curious to 

discover modern abberations that also appear in numerical shapes so that they can be connected as applications 

in numerical shapes. The goal of this study is to identify a new information inequality on the comparison of 

generalised 𝛩 -Divergences CS(M,N), a new divergence measure that is appropriate for this 𝛩 – Divergences 

and some constraints for the new divergence that are determined in relation to existing common divergence 

measures. Finally, a previously unknown link between the new divergence measure and Renyi's Entropy is 

found. 

We hope that our research will encourage readers to think about the applications of information theory's 

divergence metrics. Such types of divergences are very helpful in determining the value of an occasion, or how 

useful it is in comparison to other events. 
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